Czech J. Genet. Plant Breed., 2022, 58(4):210-222 | DOI: 10.17221/115/2021-CJGPB

The sweet potato transcription factor IbbHLH33 enhances chilling tolerance in transgenic tobaccoOriginal Paper

Tao Yu1,2, Huanan Zhou2, Zhenlei Liu2, Hong Zhai1, Qingchang Liu*,1
1 Agricultural College, China Agricultural University, Beijing, P.R. China
2 Tuber Division, Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P.R. China

Chilling is an important abiotic stress in plants. Sweet potato is sensitive to cold damage due to its tropical origin. In this study, we identified a basic helix-loop-helix (bHLH) gene, IbbHLH33, from our cold-tolerance-related transcriptomic data. Further analyses revealed that IbbHLH33 encoded a nuclear protein and was most closely related to AtbHLH33. RT-qPCR analysis showed that IbbHLH33 was expressed at the highest level in the roots, and its expression was strongly induced by low temperature (4 °C), H2O2 and abscisic acid (ABA) treatments. Transgenic tobacco plants overexpressing IbbHLH33 were obtained by Agrobacterium-mediated transformation, which enhanced the chilling resistance of tobacco. At low temperatures, the proline content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content increased significantly, while the relative conductivity decreased significantly. At the same time, the expression of proline synthesis related genes and antioxidant activity related genes increased, while the expression of ABA synthesis related genes decreased. The results showed that IbbHLH33 is a transcription factor encoding a gene of the bHLH family that regulates chilling tolerance. In conclusion, these data suggest that IbbHLH33 has the potential to improve chilling tolerance in tobacco and other plants.

Keywords: bHLH; cold tolerance; Ipomoea batata (L.) Lam.; overexpression

Published: September 8, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yu T, Zhou H, Liu Z, Zhai H, Liu Q. The sweet potato transcription factor IbbHLH33 enhances chilling tolerance in transgenic tobacco. Czech J. Genet. Plant Breed. 2022;58(4):210-222. doi: 10.17221/115/2021-CJGPB.
Download citation

Supplementary files:

Download fileYu_ESM.pdf

File size: 209.32 kB

References

  1. Atchley W.R., Terhalle W., Dress A. (1999): Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of Molecular Evolution, 48: 501-516. Go to original source... Go to PubMed...
  2. Berben G., Legrain M., Gilliquet V., Hilger F. (1990): The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast, 6: 451-454. Go to original source... Go to PubMed...
  3. Bovell-Benjamin A.C. (2007): Sweet potato: A review of its past, present, and future role in human nutrition. Advances in Food and Nutrition Research, 52: 1-59. Go to original source... Go to PubMed...
  4. Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. (2003): ICE1: A regulator of coldinduced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17: 1043-1054. Go to original source... Go to PubMed...
  5. Chinnusamy V., Zhu J., Zhu J.K. (2007): Cold stress regulation of gene expression in plants. Trends in Plant Science, 12: 444-451. Go to original source... Go to PubMed...
  6. Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. (2010): Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61: 651-679. Go to original source... Go to PubMed...
  7. Daie J., Campbell W.F. (1981): Response of tomato plants to stressful temperatures: INCREASE in abscisic acid concentrations. Plant Physiology, 67: 26-29. Go to original source... Go to PubMed...
  8. Ding Y.L., Li H., Zhang X.Y., Xie Q., Gong Z.Z., Yang S.H. (2015): OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell, 32: 278-289. Go to original source... Go to PubMed...
  9. Dong Y., Wang C., Han X., Tang S., Liu S., Xia X., Yin W. (2014): A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and Biophysical Research Communications, 450: 453-458. Go to original source... Go to PubMed...
  10. Du B., Nie N., Sun S., Hu Y., Bai Y., He S., Zhao N., Liu Q., Zhai H. (2021): A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Science, 304: 110802. Go to original source... Go to PubMed...
  11. Fan W., Zhang M., Zhang H., Zhang P. (2012): Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE, 7: e37344. Go to original source... Go to PubMed...
  12. Fan W., Deng G., Wang H., Zhang H., Zhang P. (2015): Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiologia Plantarum, 154: 560-571. Go to original source... Go to PubMed...
  13. Ferré-D'Amaré A.R., Prendergast G.C., Ziff E.B., Burley S.K. (1993): Recognition by max of its cognate DNA through a dimeric b/HLH/Z domain. Nature, 363: 38-45. Go to original source... Go to PubMed...
  14. Friedrichsen D.M., Nemhauser J., Muramitsu T., Maloof J.N., Alonso J., Ecker J.R., Furuya M., Chory J. (2002): Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 162: 1445-1456. Go to original source... Go to PubMed...
  15. Guy C.L. (1990): Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 187-223. Go to original source...
  16. Han M., Yang C., Zhou J., Zhu J., Meng J., Shen T., Xin Z., Li H. (2020): Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany, 43: 81-89. Go to original source...
  17. Horsch R., Fry J., Hoffmann N., Eichholtz D., Rogers S., Fraley R. (1985): A simple and general method for transferring genes into plants. Science, New Series, 227: 1229-1231. Go to original source... Go to PubMed...
  18. Hu X., Liu J., Liu E., Qiao K., Gong S., Wang J., Zhou A., Zhang J. (2021): Arabidopsis cold-regulated plasma membrane protein Cor413pm1 is a regulator of ABA response. Biochemical and Biophysical Research Communications, 561: 88-92. Go to original source... Go to PubMed...
  19. Huang X.S., Wang W., Zhang Q., Liu J.H. (2013): A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 162: 1178-1194. Go to original source... Go to PubMed...
  20. Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., Li H., Dong J., Li J., Gong Z., Thomashow M.F., Yang S. (2020): Coldinduced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant, 13: 894-906. Go to original source... Go to PubMed...
  21. Jin R., Kim B.H., Ji C.Y., Kim H.S., Li H.M., Ma D.F., Kwak S.S. (2017): Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 118: 45-54. Go to original source... Go to PubMed...
  22. Kaplan F., Kopka J., Sung D.Y., Zhao W., Popp M., Porat R., Guy C.L. (2007): Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal, 50: 967-981. Go to original source... Go to PubMed...
  23. Kiribuchi K., Sugimori M., Takeda M., Otani T., Okada K., Onodera H., Ugaki M., Tanaka Y., Tomiyama-Akimotob C., Yamaguchi T., Minami E., Shibuya N., Omori T., Nishiyama M., Nojiri H. Yamane H. (2004): RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein. Biochemical and Biophysical Research Communications, 325: 857-863. Go to original source... Go to PubMed...
  24. Lalk I., Dorffling K. (1985): Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiologia Plantarum, 63: 287-292. Go to original source...
  25. Laughon A., Scott M.P. (1984): Sequence of a Drosophila segmentation gene: Protein structure homology with DNA-binding proteins. Nature, 310: 25-31. Go to original source... Go to PubMed...
  26. Li S., Liu X.A., Zhao L., Huang H., Li B., Song Z., Liang M., Zhang H., Wang L., Zhou S. (2021a): Overexpression of IbSINA5 increases cold tolerance through a CBF SINACOR mediated module in sweet potato. Phyton lnternational Journal of Experimental Botany, 90: 761-772. Go to original source...
  27. Li Z., Wang B., Zhang Z., Luo W., Tang Y., Niu Y., Chong K., Xu Y. (2021b): OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Journal of Plant Physiology, 260: 153406. Go to original source... Go to PubMed...
  28. Liu P., Wang Y., Meng J., Zhang X., Zhou J., Han M., Yang C., Gan L., Li H. (2019): Transcriptome sequencing and expression analysis of genes related to anthocyanin biosynthesis in leaves of malus 'profusion' infected by Japanese apple rust. Forests, 10: 665. Go to original source...
  29. Liu Q. (2017): Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science, 67: 15-26. Go to original source... Go to PubMed...
  30. Liu Y., Chen N., Zuo C., Wu Y., Che F., Chen B. (2018): The mechanism of color fading in sunburned apple peel. Acta Physiologiae Plantarum, 41: 2. Go to original source...
  31. Llorente F., Oliveros J.C., Martínez-Zapater J.M., Salinas J. (2000): A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta, 211: 648-655. Go to original source... Go to PubMed...
  32. Ludwig S.R., Habera L.F., Dellaporta S.L., Wessler S.R. (1989): Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America, 86: 7092-7096. Go to original source... Go to PubMed...
  33. Murre C., McCaw P.S., Baltimore D. (1989): A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 56: 777-783. Go to original source... Go to PubMed...
  34. Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. (1999): Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461: 205-210. Go to original source... Go to PubMed...
  35. Oh J., Park E., Song K., Bae G., Choi G. (2020): Phytochrome interacting factor 8 inhibits phytochrome A-mediated farred light responses in Arabidopsis. Plant Cell, 32: 186-205. Go to original source... Go to PubMed...
  36. Peng T., Zhu X., Duan N., Liu J.H. (2014): PtrBAM1, a β -amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant, Cell and Environment, 37: 2754-2767. Go to original source... Go to PubMed...
  37. Picha D. (1987): Chilling injury, respiration, and sugar changes in sweet potatoes stored at low temperature. Journal of the American Society for Horticultural Science, 112: 497-502. Go to original source...
  38. Porter W.C., Pharr D.M., Kijshman L.J., Pope D.T. (1976): Discoloration of chilled sweet potato [Ipomoea batatas (L.) Lam.] roots: Factors related to cultivar differences. Journal of Food Science, 41: 938-941. Go to original source...
  39. Sah S.K., Reddy K.R., Li J. (2016): Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7: 571. Go to original source... Go to PubMed...
  40. Satoh R., Nakashima K., Seki M., Shinozaki K., YamaguchiShinozaki K. (2002): ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130: 709-719. Go to original source... Go to PubMed...
  41. Seo M., Koshiba T. (2002): Complex regulation of ABA biosynthesis in plants. Trends in Plant Science, 7: 41-48. Go to original source... Go to PubMed...
  42. Shi Y., Ding Y., Yang S. (2018): Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 23: 623-637. Go to original source... Go to PubMed...
  43. Suzuki N., Koussevitzky S., Mittler R., Miller G. (2012): ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 35: 259-270. Go to original source... Go to PubMed...
  44. Tamminen I., Mäkelä P., Heino P., Palva E.T. (2001): Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. The Plant Journal, 25: 1-8. Go to original source... Go to PubMed...
  45. Thomashow M.F. (1999): Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 571-599. Go to original source...
  46. Weiser C.J. (1970): Cold resistance and injury in woody plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, New Series, 169: 1269-1278. Go to original source... Go to PubMed...
  47. Withers L.A., King P.J. (1979): Proline: A novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiology, 64: 675-678. Go to original source... Go to PubMed...
  48. Xiong L., Ishitani M., Lee H., Zhu J.K. (2001): The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. The Plant Cell, 13: 2063-2083. Go to original source...
  49. Yang X., Wang R., Hu Q., Li S., Mao X., Jing H., Zhao J., Hu G., Fu J., Liu C. (2019): DlICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 142: 490-499. Go to original source... Go to PubMed...
  50. Yao M., Ge W., Zhou Q., Zhou X., Luo M., Zhao Y., Wei B., Ji S. (2021): Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chemistry, 352: 129458. Go to original source... Go to PubMed...
  51. Yoo S.D., Cho Y.H., Sheen J. (2007): Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2: 1565-1572. Go to original source... Go to PubMed...
  52. Zhang H., Gao X., Zhi Y., Li X., Zhang Q., Niu J., Wang J., Zhai H., Zhao N., Li J., Liu Q., He S. (2019): A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist, 223: 1918-1936. Go to original source... Go to PubMed...
  53. Zhang H., Zhang Q., Zhai H., Gao S.P., Yang L., Wang Z., Xu Y.T., Huo J.X., Ren Z.T., Zhao N., Wang X., Li J., Liu Q., He S. (2020): IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. The Plant Cell, 32: 1102-1123. Go to original source... Go to PubMed...
  54. Zhao Q., Xiang X., Liu D., Yang A., Wang Y. (2018): Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Frontiers in Plant Science, 9: 381. Go to original source... Go to PubMed...
  55. Zhou Y., Zhai H., He S., Zhu H., Gao S., Xing S., Wei Z., Zhao N., Liu Q. (2020): The sweetpotato BTB-TAZ protein gene, IbBT4, enhances drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 11: 877. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.