Czech J. Genet. Plant Breed., 2011, 47(10):S20-S27 | DOI: 10.17221/3249-CJGPB

N.I. Vavilov's theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution

J. DVORAK1, M.-C. LUO1, E.D. AKHUNOV1,2
1 Department of Plant Sciences, University of California, CA 95616 Davis, USA
2 Department of Plant Pathology, Kansas State University, KS 66506 Manhattan, USA

N.I. Vavilov hypothesized that the geographical centres of diversity of crops indicate their geographical centres of origin. Vavilov's conclusions about the geographical origins of einkorn, durum and common wheat agree well with current population and molecular genetic studies when macro-geography is used but agree poorly when they are examined at higher resolution. We examined the causes of such disagreements for tetraploid emmer wheat and hexaploid common and club wheat. Molecular studies suggest that emmer was domesticated in the Diyarbakir region in south-eastern Turkey. Nucleotide diversity of wild emmer in the Diyarbakir region estimated earlier was compared with nucleotide diversity of wild and domesticated emmer across their distribution estimated here. Although domesticated emmer is only half as diverse as wild emmer, it is more diverse than the ancestral wild emmer population in the Diyarbakir region. Its centre of diversity is in the Mediterranean and does not coincide with the geographical centre of emmer origin. A similar disagreement exists in hexaploid wheat. Its centre of molecular diversity is in Turkey, which is west of the putative site of its origin in Transcaucasia and north-western Iran. It is shown that the primary cause of the disagreements between geographical centres of crop diversity and geographical centres of crop origin is gene flow from an ancestor subsequently to crop origin, which modifies the geographical pattern of crop diversity. When such gene flow takes place and when crop is domesticated in a peripheral population of the ancestor, the centre of crop diversity and the centre of crop origin are unlikely to coincide.

Keywords: domestication; emmer; gene flow; nucleotide diversity; Triticum aestivum; Triticum dicoccoides

Published: December 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
DVORAK J, LUO M-C, AKHUNOV ED. N.I. Vavilov's theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J. Genet. Plant Breed. 2011;47(Special Issue):S20-27. doi: 10.17221/3249-CJGPB.
Download citation

References

  1. Akhunov E.D., Akhunova A.R., Dvorak J. (2005): BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theoretical and Applied Genetics, 111: 1617- 1622. Go to original source... Go to PubMed...
  2. Akhunov E.D., Akhunova A.R., Anderson O.D., Anderson J.A., Blake N., Clegg M.T., ColemanDerr D., Conley E.J., Crossman C.C., Deal K.R., Dubcovsky J., Gill B.S., Gu Y.Q., Hadam J., Heo H., Huo N., Lazo G.R., Luo M.C., Ma Y.Q., Matthews D.E., McGuire P.E., Morrell P.L., Qualset C.O., Renfro J., Tabanao D., Talbert L.E., Tian C., Toleno D.M., Warburton M.L., You F.M., Zhang W., Dvorak J. (2010): Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics, 11: 702. Go to original source... Go to PubMed...
  3. Balfourier F., Roussel V., Strelchenko P., Exbrayat-Vinson F., Sourdille P., Boutet G., Koenig J., Ravel C., Mitrofanova O., Beckert M., Charmet G. (2007): A worldwide bread wheat core collection arrayed in a 384-well plate. Theoretical and Applied Genetics, 114: 1265-1275. Go to original source... Go to PubMed...
  4. Buckler E.S., Thornsberry J.M., Kresovich S. (2001): Molecular diversity, structure and domestication of grasses. Genetical Research, 77: 213-218. Go to original source... Go to PubMed...
  5. Dvorak J., Luo M.-C. (1999): Evolution of free-threshing and hulled forms of Triticum aestivum: old problems and new tools. In: Caligari P.D.S., Brandham P.E. (eds): Wheat Taxonomy: the Legacy of John Percival. Academic Press, London, 127-136.
  6. Dvorak J., Akhunov E.D. (2005): Tempos of deletions and duplications of gene loci in relation to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics, 171: 323-332. Go to original source... Go to PubMed...
  7. Dvorak J., Luo M.C., Yang Z.L., Zhang H.B. (1998): The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97: 657-670. Go to original source...
  8. Dvorak J., Akhunov E.D., Akhunov A.R., Deal K.R., Luo M.C. (2006): Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Molecular Biology and Evolution, 23: 1386-1396. Go to original source... Go to PubMed...
  9. Gokgol M. (1941): Über die Genzentrentheorie und den Ursprung des Weizens. Zeitschrift für Pflanzenzüchtung, 23: 562-578.
  10. Gordon D. (2004): Viewing and editing assembled sequences using consed. In: Baxevanis A.D., Davison D.B. (eds): Current Protocols in Bioinformatics. John Wiley & Co., New York, 11.12.11-11.12.43.
  11. Green P. (1998): swat/cross_match/phrap package. Available at http://bozeman.mbt.washington.edu/phrap.docs/phrap.html.
  12. Harlan J.R. (1971): Agricultural origins: centers and noncenters. Science, 174: 468-474. Go to original source... Go to PubMed...
  13. Harlan J.R. (1975): Crops and Man. American Society of Agronomy, Madison.
  14. Haudry A., Cenci A., Ravel C., Bataillon T., Brunel D., Poncet C., Hochu I., Poirier S., Santoni S., Glemin S., David J. (2007): Grinding up wheat: a massive loss of nucleotide diversity since domestication. Molecular Biology and Evolution, 24: 1506-1517. Go to original source... Go to PubMed...
  15. Heun M., Schafer-Pregel R., Klawan D., Castagna R., Accerbi M., Borghi B., Salamini F. (1997): Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278: 1312-1314. Go to original source...
  16. Huang S., Sirikhachornkit A., Su X., Faris J., Gill B.S., Haselkorn R., Gornicki P. (2002): Genes encoding plastid acetyl-CoA carboxylase and 3-phopshoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 99: 8133-8138. Go to original source... Go to PubMed...
  17. Hyten D.L., Song Q.J., Zhu Y.L., Choi I.Y., Nelson R.L., Costa J.M., Specht J.E., Shoemaker R.C., Cregan P.B. (2006): Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences of the United States of America, 103: 16666-16671. Go to original source... Go to PubMed...
  18. Kihara H. (1944): Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (Japanese). Agriculture and Horticulture (Tokyo), 19: 13-14.
  19. Kilian B., Ozkan H., Walther A., Kohl J., Dagan T., Salamini F., Martin W. (2007): Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Molecular Biology and Evolution, 24: 2657-2668. Go to original source... Go to PubMed...
  20. Luo M.C., Yang Z.L., You F.M., Kawahara T., Waines J.G., Dvorak J. (2007): The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theoretical and Applied Genetics, 114: 947-959. Go to original source... Go to PubMed...
  21. Luo M.C., Deal K.R., Akhunov E.D., Akhunova A.R., Anderson O.D., Anderson J.A., Blake N., Clegg M.T., Coleman-Derr D., Conley E.E., Crossman C.C., Dubcovsky J., Gill B.S., Gu Y.Q., Hadam J., Heo H.Y., Huo N., Lazo G., Ma Y.Q., Matthews D.E., McGuire P.E., Morrell P.L., Qualset C.O., Renfro J., Tabanao D., Talbert L.E., Tian C., Toleno D.M., Warburton M.L., You F.M., Zhang W.J., Dvorak J. (2009): Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proceedings of the National Academy of Sciences of the United States of America, 106: 15780-15785. Go to original source... Go to PubMed...
  22. McFadden E.S., Sears E.R. (1946): The origin of Triticum spelta and its free-threshing hexaploid relatives. Journal of Heredity, 37: 81-89, 107-116. Go to original source...
  23. Nesbitt M., Samuel D. (1996): From staple crop to extinction? The archaeology and history of hulled wheats. In: Padulosi S., Hammer K., Heller J. (eds): Hulled Wheats. Promoting the Conservation and Use of Underutilized and Neglected Crops. 4. Proc. 1 st Int. Workshop Hulled Wheats. International Plant Genetic Resources Institute, Rome, Castelvecchio Pacoli, Tuscany, 41-100.
  24. Ozkan H., Brandolini A., Pozzi C., Effgen S., Wunder J., Salamini F. (2005): A reconsideration of the domestication geography of tetraploid wheat. Theoretical and Applied Genetics, 110: 1052-1060. Go to original source... Go to PubMed...
  25. Schiemann E. (1939): Gedanken zur Genzentrentheorie Vavilovs. Naturwissenschaften, 27: 377-383. Go to original source...
  26. Tajima F. (1983): Evolutionary relationship of DNA sequences in finite populations. Genetics, 105: 437- 460. Go to original source... Go to PubMed...
  27. Tajima F. (1989): Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585-595. Go to original source... Go to PubMed...
  28. Tsunewaki K. (1966): Comparative gene analysis of common wheat and its ancestal species. II. Waxiness, growth habit and awnedness. Japanese Journal of Botany, 19: 175-229.
  29. Tsunewaki K. (1968): Origin and phylogenetic differentiation of common wheat revealed by comparative gene analysis. In: Finley K.W, Shepherd K.W. (eds): 3rd Int. Wheat Genetic Symposium. Australian Academy of Sciences, Canberra, 71-85.
  30. Vavilov N.I. (1926): Studies on the origin of cultivated plants. (Russian) Bulletin of Applied Botany and Plant Breeding, 14: 1-245.
  31. Vavilov N.I. (1992): Origin and Geography of Cultivated Plants. Cambridge University Press, Cambridge.
  32. Watterson G.A. (1975): On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7: 256-276. Go to original source... Go to PubMed...
  33. Wheat SNP Database. Available at http://probes.pw.usda.gov:8080/snpworld/Search
  34. Wright S.I., Bi I.V., Schroeder S.G., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B S. (2005): The effects of artificial selection on the maize genome. Science, 308: 1310-1314. Go to original source... Go to PubMed...
  35. Xu Z., Deal K.R., Li W., Covaleda L., Chang Y.-L., Dvorak J., Luo M.-C., Gill B.S., Anderson O.D., Zhang H.B. (2002): Construction and characterization of five large-insert BAC and BIBAC libraries of Aegilops tauschii, the diploid donor of the wheat D genome. In: Heller S.R. (ed.): 10th Int. Plant and Animal Genome Conference. Scherago International, Inc., San Diego.
  36. Zohary D. (1970): Centers of diversity and centers of origin. In: Frankel O.H., Bennett E. (eds): Genetic Resources in Plants - their Exploration and Conservation. Blackwell Science Publishing, Oxford, 33-42.
  37. Zohary D., Hopf M. (1994): Domestication of Plants in the Old World. Clarendon Press, Oxford.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.