Czech J. Genet. Plant Breed., X:X | DOI: 10.17221/84/2025-CJGPB
Evaluation of gamma-irradiated Pisum sativum germplasm for agronomic traits and tolerance to Didymella pinodesOriginal Paper
- 1 Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
- 2 Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute (BPI), Athens, Greece
- 3 Faculty of Forestry and Natural Environment, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 4 Molecular Biology Laboratory, Department of Breeding, Maritsa Vegetable Crops Research Institute, Agricultural Academy, Plovdiv, Bulgaria
Ascochyta blight, caused by a complex of pathogenic fungi including Didymella pinodes, Ascochyta pisi, and Phoma pinodella, is a major disease of field pea (Pisum sativum), causing severe losses through lesions on leaves, stems, and pods. Mutation breeding using gamma irradiation is a non-GMO strategy to induce genetic variation and accelerate the development of improved genotypes. In this study, the M2 generation of the forage pea cultivar Dodoni (Pisum sativum L. var. arvense), derived from M0 seeds irradiated with 100 Gy, was evaluated for tolerance to D. pinodes (CBS 251.47) using a detached-leaf assay under controlled greenhouse conditions. Disease progression was quantified via image-based analysis on the 3rd and 5th days post-infection, calculating diseased area and disease severity index. Extensive phenotypic evaluation was also conducted on 16 families in the greenhouse and 100 families under field conditions, using an augmented incomplete block design. Screening revealed several M2 families with significantly improved tolerance compared to non-irradiated controls. Among these, some individuals combined enhanced resistance with improved yield-related traits, such as higher pod number and biomass, while others exhibited reduced agronomic performance. These findings highlight the phenotypic diversity induced by gamma irradiation and demonstrate the potential to generate dual-purpose pea genotypes with both disease resistance and enhanced productivity, providing valuable material for future breeding of resilient cultivars.
Keywords: Ascochyta blight; disease tolerance; field pea; mutagenesis; mutation breeding
Received: September 22, 2025; Revised: November 28, 2025; Accepted: December 1, 2025; Prepublished online: January 16, 2026
References
- Ahloowalia B.S., Maluszynski M., Nichterlein K. (2004): Global impact of mutation-derived varieties. Euphytica, 135: 187-204.
Go to original source... - Annan E.N., Nyamesorto B., Yan Q., McPhee K., Huang L. (2023): Οptimized high throughput ascochyta blight screening protocols and immunity to A. pisi in pea. Pathogens, 12: 494.
Go to original source...
Go to PubMed... - Annicchiarico P., Nazzicari N., Notario T., Monterrubio Martin C., Romani M., Ferrari B., Pecetti L. (2021): Pea breeding for intercropping with cereals: Variation for competitive ability and associated traits, and assessment of phenotypic and genomic selection strategies. Frontiers in Plant Science, 12: 731949.
Go to original source...
Go to PubMed... - Barilli E., Cobos M.J., Rubiales D. (2016): Clarification on host range of Didymella pinodes the causal agent of pea Ascochyta blight. Frontiers in Plant Science, 7: 592.
Go to original source...
Go to PubMed... - Boutet G., Lavaud C., Lesné A., Miteul H., Pilet-Nayel, M.L., Andrivon D., Lejeune-Hénaut I., Baranger A. (2023): Five regions of the pea genome co-control partial resistance to D. pinodes, tolerance to frost, and some architectural or phenological traits. Genes, 14: 1399.
Go to original source...
Go to PubMed... - Brhane H., Hammenhag C. (2024): Genetic diversity and population structure analysis of a diverse panel of pea (Pisum sativum). Frontiers in Genetics, 15: 1396888.
Go to original source...
Go to PubMed... - Carpenter M.A., Goulden D.S., Woods C.J., Thomson S.J., Kenel F., Frew T.J., Cooper R.D., Timmerman-Vaughan G.M. (2018): Genomic selection for Ascochyta blight resistance in pea. Frontiers in Plant Science, 9: 1878.
Go to original source...
Go to PubMed... - Carrillo E., Satovic Z., Aubert G., Boucherot K., Rubiales D., Fondevilla S. (2014): Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Reports, 33: 1133-1145.
Go to original source...
Go to PubMed... - Castillejo M.Á., Curto M., Fondevilla S., Rubiales D., Jorrín J.V. (2010): Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. Journal of Agricultural and Food Chemistry, 58: 12822-12832.
Go to original source...
Go to PubMed... - de Mendiburu F. (2020): Package 'Agricolae' Statistical Procedures for Agricultural Research (1.3-3). Available at http://tarwi.lamolina.edu.pe/~fmendiburu
- Duranti M., Gius C. (1997): Legume seeds: Protein content and nutritional value. Field Crops Research, 53: 31-45.
Go to original source... - FAOSTAT (2022): Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/faostat/
- Fondevilla S., Küster H., Krajinski F., Cubero J.I., Rubiales D. (2011): Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics, 12: 28.
Go to original source...
Go to PubMed... - Fonseka D.L., Markell S.G., Zaccaron M.L., Ebert M.K., Pasche J.S. (2023): Ascochyta blight in North Dakota field pea: The pathogen complex and its fungicide sensitivity. Frontiers in Plant Science, 14: 1165269.
Go to original source...
Go to PubMed... - Fox J., Weisberg S. (2019): An R Companion to Applied Regression. 3rd Ed.,Thousand Oaks, Sage.
- Jha A.B., Gali K.K., Tar'an B., Warkentin T.D. (2017): Fine mapping of QTLs for Ascochyta blight resistance in pea using heterogeneous inbred families. Frontiers in Plant Science, 8: 765.
Go to original source...
Go to PubMed... - Joshi S., Pandey B.R., Rosewarne G. (2022): Characterization of field pea (Pisum sativum) resistance against Peyronellaea pinodes and Didymella pinodella that cause Ascochyta blight. Frontiers in Plant Science, 13: 976375.
Go to original source...
Go to PubMed... - Klein A., Houtin H., Rond-Coissieux C., Naudet-Huart M., Touratier M., Marget P., Burstin J. (2020): Meta-analysis of QTL reveals the genetic control of yield-related traits and seed protein content in pea. Scientific Reports, 10: 15925.
Go to original source...
Go to PubMed... - Lee R.C., Grime C.R., O'Driscoll K., Khentry Y., Farfan-Caceres L.M., Tahghighi H., Kamphuis L.G. (2023): Field pea (Pisum sativum) germplasm screening for seedling Ascochyta blight resistance and genome-wide association studies reveal loci associated with resistance to Peyronellaea pinodes and Ascochyta koolunga. Phytopathology, 113: 265-276.
Go to original source...
Go to PubMed... - Liu N., Xu S., Yao X., Zhang G., Mao W., Hu Q., Feng Z., Gong Y. (2016): Studies on the control of Ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang Province, China. Frontiers in Microbiology, 7: 481.
Go to original source...
Go to PubMed... - Liu N., Liu C., Song Y., Han X., Zhang G., Feng Z., Wang B., Bu Y., Ou J., Gong Y. (2023): Genome and transcriptome analysis of Ascochyta pisi provides insights into the pathogenesis of ascochyta blight of pea. Microbiology Spectrum, 11: e0448822.
Go to original source...
Go to PubMed... - Martin-Sanz A., Caminero C., Jing R., Flavell A.J., Perez De La Vega M. (2011): Genetic diversity among Spanish pea (Pisum sativum L.) landraces, pea cultivars and the World Pisum sp. Core Collection assessed by retrotransposon-based insertion polymorphisms (RBIPs). Spanish Journal of Agricultural Research, 9: 166-178.
Go to original source... - Onfroy C., Baranger A., Tivoli B. (2007): Biotic factors affecting the expression of partial resistance in pea to Ascochyta blight in a detached stipule assay. In: Tivoli B., Baranger A., Muehlbauer F.J., Cooke B.M. (eds): Ascochyta Blights of Grain Legumes. Dordrecht, Springer: 13-27.
Go to original source... - Pandey P.K., Bhowmik P., Kagale S. (2022): Optimized methods for random and targeted mutagenesis in field pea (Pisum sativum L.). Frontiers in Plant Science, 13: 995542.
Go to original source...
Go to PubMed... - Parihar A.K., Kumar J., Gupta D.S., Lamichaney A., Naik Sj S., Singh A.K., Dixit G.P., Gupta S., Toklu F. (2022): Genomics enabled breeding strategies for major biotic stresses in pea (Pisum sativum L.). Frontiers in Plant Science, 13: 861191.
Go to original source...
Go to PubMed... - Prioul S., Frankewitz A., Deniot G., Morin G., Baranger A. (2004): Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theoretical and Applied Genetics, 108: 1322-1334.
Go to original source...
Go to PubMed... - Prioul-Gervais S., Deniot G., Receveur E.-M., Frankewitz A., Fourmann M., Rameau C., Pilet-Nayel M.-L., Baranger A. (2007): Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theoretical and Applied Genetics, 114: 971-984.
Go to original source...
Go to PubMed... - Sarri E., Samolada S.M., Katsileros A., Tomlekova N., Abraham E.M., Tani E. (2024): Effect of γ-irradiation on the growth and yield response of three varieties of pea (Pisum spp.). Agronomy, 14: 1695.
Go to original source... - Schneider C.A., Rasband W.S., Eliceiri K.W. (2012): NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9: 671-675.
Go to original source...
Go to PubMed... - Sharma A., Banyal D.K., Dhole V.J., Bansuli Rana R.S., Kumar R., Kumar P., Kumar N., Srishti Prashar A., Singh V., Sharma A. (2025): Development of new powdery mildew resistant lines in garden pea (Pisum sativum L.) using induced mutagenesis and validation of resistance for the er1 and er2 gene through molecular markers. Frontiers in Plant Science, 15: 1501661.
Go to original source...
Go to PubMed... - Shu Q.-Y., Forster B.P., Nakagawa H. (2012): Plant Mutation Breeding and Biotechnology. Wallingford, CABI.
Go to original source... - Smýkal P., Aubert G., Burstin J., Coyne C.J., Ellis N.T.H., Flavell A.J., Ford R., Hýbl M., Macas J., Neumann P., McPhee K.E., Redden R.J., Rubiales D., Weller J.L., Warkentin T.D. (2012): Pea (Pisum sativum L.) in the genomic era. Agronomy, 2: 74-115.
Go to original source... - Timmerman-Vaughan G.M., Moya L., Frew T.J., Murray S.R., Crowhurst R. (2016): Ascochyta blight disease of pea (Pisum sativum L.): Defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theoretical and Applied Genetics, 129: 879-896.
Go to original source...
Go to PubMed... - Tivoli B., Banniza S. (2007): Comparison of the epidemiology of Ascochyta blights on grain legumes. European Journal of Plant Pathology, 119: 59-76.
Go to original source... - Tzitzikas E.N., Vincken J.P., De Groot J., Gruppen H., Visser R.G.F. (2006): Genetic variation in pea seed globulin composition. Journal of Agricultural and Food Chemistry, 54: 425-433.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

ORCID...