Czech J. Genet. Plant Breed., X:X | DOI: 10.17221/47/2025-CJGPB

Genetic characterisation of a novel male sterile two-type line system 19F08AB in Brassica napus L.Original Paper

Lirong Zhao1, Zikang Chen1, Ruting Xie1, Hui Dong1, Haibo Yu1, Dongsuo Zhang1, Zhaoxin Hu2, Shengwu Hu ORCID...1*
1 College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P.R. China
2 Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA

Rapeseed (Brassica napus L.) is a major global oilseed crop and exhibits significant heterosis. The discovery and characterisation of novel male-sterile accessions remain fundamental for harnessing heterosis in rapeseed breeding. Previously, we developed a male sterile two-type line system 19F08AB in B. napus. In this study, anther abortion in 19F08A was characterised using the squash method. The inheritance of male sterility in 19F08A and its genetic relationship to reported male sterile accessions in rapeseed was investigated using classical genetic analysis and male-sterility-gene-specific molecular markers. Results indicated that male sterile flowers of 19F08A exhibit flat petals, reduced floral organs, short filaments, and completely degenerated stamens devoid of pollen. Pollen mother cells in 19F08A degenerated at the pre-meiotic stage and aborted completely at the tetrad stage, with no dyad or tetrad formation observed. This suggested that 19F08A represents a meiosis abnormality-type male sterility. Classical genetic and molecular marker analysis revealed that male-sterile plants 19F08A carry the genotype of pol (RfpRfpMsms), whereas fertile plants 19F08B possess pol (RfpRfpmsms). The effect of the pol cytoplasm was masked by the Rfp gene. Therefore, fertility in 19F08AB is controlled by a pair of nuclear genes (Ms/ms), with male sterility exhibiting dominance over fertility. The application prospects of this male-sterile accession are also discussed. These findings expand the pool of male-sterile resources available for B. napus hybrid breeding and contribute to plant male sterility theory.

Keywords: anther abortion; cytoplasmic male sterility; genic male sterility; inheritance; rapeseed

Received: June 18, 2025; Revised: September 8, 2025; Accepted: September 11, 2025; Prepublished online: September 23, 2025 

Download citation

Supplementary files:

Download file47-2025_CJGPB_Zhao_ESM.pdf

File size: 1.12 MB

References

  1. Bhattacharya J., Nitnavare R.B., Bhatnagar Mathur P., Reddy P.S. (2024): Cytoplasmic male sterility based hybrids: Mechanistic insights. Planta, 260: 100. Go to original source... Go to PubMed...
  2. Chen F., Hu B., Li C., Li Q., Chen W., Zhang M. (1998): Genetic studies on GMS in Brassica napus L. I. inheritance of recessive GMS line 9012A. Acta Agronomica Sinica, 24: 431-438. (in Chinese)
  3. Deng Z., Li X., Wang Z., Jiang Y., Wan L., Dong F., Chen F., Hong D., Yang G. (2016): Map-based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRfb, a male sterility gene, in Brassica napus. Theoretical and Applied Genetics, 129: 53-64. Go to original source... Go to PubMed...
  4. Dong F., Hong D., Liu P., Xie Y., He Q., Yang G. (2010): A novel genetic model for recessive genic male sterility line 9012AB in rapeseed (Brassica napus L.). Journal of Huazhong Agricultural University, 29: 262-267. (in Chinese)
  5. Dong Y., Du H. (1993): Study on a dominant genetic male sterility discovered in Brassica napus L. Southwest China Journal of Agricultural Sciences, 6: 6-10. (in Chinese)
  6. Doyle J.J., Doyle J.L. (1990): Isolation of plant DNA from fresh tissue. Focus, 12: 13-15. Go to original source...
  7. Dun X., Zhou Z., Xia S., Wen J., Yi B., Shen J., Ma C., Tu J., Fu T. (2011): BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. The Plant Journal, 68: 532-545. Go to original source... Go to PubMed...
  8. Fu T. (2019): Genetics and Breeding of Hybrid Rapeseed. Wuhan, Hubei Science and Technology Press. (in Chinese)
  9. Gautam R., Shukla P., Kirti P.B. (2023): Male sterility in plants: An overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. Theoretical and Applied Genetics, 136: 195. Go to original source... Go to PubMed...
  10. Havlickova L., Curn V., Jozova E., Kucera V., Vyvadilova M., Klima M. (2012): Sequence analysis of the mtDNA region correlated with Shaan 2A cytoplasmic male sterility in rapeseed (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 48: 139-142. Go to original source...
  11. Hong D., Wan L., Liu P., Yang G., He Q. (2006): AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 151: 401-409. Go to original source...
  12. Hou G., Wang H., Zhang R. (1990): Genetic study on genic male sterility (GMS) material No.117A in Brassica napus. Chinese Journal of Oil Crop Sciences, 2: 7-10. (in Chinese)
  13. Hu S., Yu C., Zhao H., Ke G. (1999): The genetic of a new kind of male sterility accession "Shaan-GMS" in Brassica napus L. Acta Botanica Boreali-occidentalia Sinica, 19: 63-67. (in Chinese)
  14. Hu S., Yu C., Zhao H., Lu M., Zhang C., Yu Y. (2004): Identification and genetic analysis of the fertility restoring gene for dominant male sterility accession "Shaan-GMS" in Brassica napus L. Journal of Northwest A & F University (Natural Science Edition), 32: 9-12. (in Chinese)
  15. Kim Y.J., Zhang D. (2018): Molecular control of male fertility for crop hybrid breeding. Trends in Plant Science, 23: 53-65. Go to original source... Go to PubMed...
  16. Kitazaki K., Oda K., Akazawa A., Iwahori R. (2023): Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. Theoretical and Applied Genetics, 136: 156. Go to original source... Go to PubMed...
  17. Li J., Tang Z., Zhang X., Shen L. (1995): Breeding a genic and cytoplasmic double-MS line of rapeseed (Brassica napus L.). Plant Breeding, 114: 552-554. Go to original source...
  18. Li J., Hong D., He J., Ma L., Wan L., Liu P., Yang G. (2012): Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theoretical and Applied Genetics, 125: 223-234. Go to original source... Go to PubMed...
  19. Li S., Qian Y., Wu Z. (1985): Inheritance of genic male sterility in Brassica napus and its application to commercial production. Acta Agriculturae Shanghai, 1: 1-12. (in Chinese)
  20. Liu J., Hong D., Lu W., Liu P., He Q., Yang G. (2008): Genetic analysis and molecular mapping of gene associated with dominant genic male sterility in rapeseed (Brassica napus L.). Genes Genomics, 30: 523-532.
  21. Liu Z., Yang Z., Wang X., Li K., An H., Liu J., Yang G., Fu T., Yi B., Hong D. (2016): A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Molecular Plant, 9: 1082-1084. Go to original source... Go to PubMed...
  22. Liu Z., Dong F., Wang X., Wang T., SU R., Hong D., Yang G. (2017): A pentatricopeptide repeat protein restores nap cytoplasmic male sterility in Brassica napus. Journal of Experimental Botany, 68: 4115-4123. Go to original source... Go to PubMed...
  23. Mathias R. (1985): A new dominant gene of male sterility in rapeseed (Brassica napus L.). Zeitschrift für Pflanzenzüchtung, 94: 170-173.
  24. Pan T., Zeng F., Wu S., Zhao Y. (1988): A study on the breeding and application GMS ling of low eruci acid in rapeseed (B. napus). Chinese Journal of Oil Crop Sciences, 3: 5-8. (in Chinese)
  25. Singh S., Dey S.S., Bhatia R., Kumar R., Behera T.K. (2019): Current understanding of male sterility systems in vegetable Brassica and their exploitation in hybrid breeding. Plant Reproduction, 32: 231-256. Go to original source... Go to PubMed...
  26. Song L., Fu T., Yang G., Tu J., Ma C. (2005): Genetic verification of multiple allelic gene for dominant genic male sterility in 609AB (Brassica napus L.). Acta Agronomica Sinica, 31: 869-875. (in Chinese)
  27. Song L., Fu T., Tu J., Ma C., Yang G. (2006): Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theoretical and Applied Genetics, 113: 55-62. Go to original source... Go to PubMed...
  28. Sun X., Hu S., Yu C. (2009): Cytological observation of anther development of an ecological male sterile line H50S in Brassica napus L. Acta Agriculturae Boreali-occidentalis Sinica, 18: 153-158. (in Chinese)
  29. Sun Y., Zhang D., Wang Z., Guo Y., Sun X., Li W., Zhi W., Hu S. (2020): Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L. BMC Plant Biology, 20: 8. Go to original source... Go to PubMed...
  30. Wang D., Guo A., Li D., Tian J. (2006): Molecular markers linked to mono-dominant genic male sterile gene in rapeseed (Brassica napus L.). Physiology and Molecular Biology of Plants, 32: 513-518.
  31. Wang T., Tian Z., Huang Z., Wei Z., Shao M. (1999): Selection and breeding of dominant nucleic male sterile line with low erucic and glucosinolate content (Qianyou 2AB) in B. napus. Guizhou Agricultural Sciences, 27: 14-18. (in Chinese)
  32. Xia S., Wang Z., Zhang H., Hu K., Zhang Z., Qin M., Dun X., Yi B., Wen J., Ma C., Shen J., Fu T., Tu J. (2016): Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell, 28: 2060-2078. Go to original source... Go to PubMed...
  33. Xiao L., Zhang J., Guo S., Jin H., Ouyang Q., Long X., Yan Z., Tian E. (2025): Exploration of the molecular mechanism behind a novel natural genic male sterile mutation of 1205A in Brassica napus. BMC Plant Biology, 25: 142. Go to original source... Go to PubMed...
  34. Xiao Z., Xin X., Chen H., Hu S. (2013): Cytological investigation of anther development in DGMS line Shaan-GMS in Brassica napus L. Czech Journal of Genetics and Plant Breeding, 49: 16-23. Go to original source...
  35. Xin Q., Shen Y., Li X., Lu W., Wang X., Han X., Dong F., Wan L., Yang G., Hong D., Cheng Z. (2016): MS5 mediates early meiotic progression and its natural variants may have applications for hybrid production in Brassica napus. Plant Cell, 28: 1263-1278. Go to original source... Go to PubMed...
  36. Yan X., Zeng X., Wang S., Li K., Yuan R., Gao H., Luo J., Liu F., Wu Y., Li Y., Zhu L., Wu G. (2016): Aberrant meiotic prophase I leads to genic male sterility in the novel TE5A mutant of Brassica napus. Scientific Reports, 6: 33955. Go to original source... Go to PubMed...
  37. Yang G., Fu T. (1993): A potential way of utilizing heterosis in rapeseed-genic and cytoplasmic male sterility (GCMS). Journal of Huazhong Agricultural University, 12: 307-316. (in Chinese)
  38. Yang G., Fu T., Ma C., Yang X. (1996): Establishment of dominant genic and polima cytoplasmic male sterility in Brassica napus L. Journal of Huazhong Agricultural University, 15: 215-220. (in Chinese)
  39. Yi B., Zeng F., Lei S., Chen Y., Yao X., Zhu Y., Wen J., Shen J,. Ma C., Tu J., Fu T. (2010): Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 63: 925-938. Go to original source... Go to PubMed...
  40. Yu C., Li W., Chang J., Hu S. (2007): Development of a thermo-sensitive male-sterile line 373S in Brassica napus L. Chinese Agricultural Science Bulletin, 23: 245-248. (in Chinese)
  41. Yu F., Fu T. (1990): Cytomorphological research on anther development of several male-sterile lines in Brassica napus L. Journal of Wuhan Botanical Research, 8: 209-216. (in Chinese)
  42. Yu H. (2022): Genetic diversity of mustard crops and preliminary study of two male sterile lines in Brassica napus L. [Master Thesis.] Yangling, Northwest A&F University. (in Chinese)
  43. Zeng X., Yan X., Yuan R., Li K., Wu Y., Liu F., Luo J., Li J., Wu G. (2017): Identification and analysis of MS5d: A gene that affects double-strand break (DSB) repair during meiosis I in Brassica napus microsporocytes. Frontiers in Plant Science, 7: 1966. Go to original source... Go to PubMed...
  44. Zeng X., Li H., Li K., Yuan R., Zhao S., Li J., Luo J., Li X., Ma H., Wu G., Yan X. (2021): Evolution of the Brassicaceae-specific MS5-Like family and neofunctionalization of the novel MALE STERILITY 5 gene essential for male fertility in Brassica napus. New Phytologist, 229: 2339-2356. Go to original source... Go to PubMed...
  45. Zhang D., Zhang X., Chen Z, Chen H., Zhang Q., Hu Z., Hu S. (2025): Molecular mapping of dominant male sterile gene in the Brassica napus line Shaan-GMS by BSA-Seq and candidate gene association analysis. Crop Science, 65: e70043. Go to original source...
  46. Zhang X., Chen H., Zhang Q., Zhang Y., Xiao Z., Guo Y., Yu F., Hu S. (2020): Cytological and genetic characterisation of dominant GMS line Shaan-GMS in Brassica napus L. The Journal of Applied Genetics, 61: 477-488. Go to original source... Go to PubMed...
  47. Zhang Y., An R., Song M., Xie C., Wei S., Wang D., Dong Y., Jia Q., Huang S., Mu J. (2023): A set of molecular markers to accelerate breeding and determine seed purity of CMS three-line hybrids in Brassica napus. Plants, 12: 1514. Go to original source... Go to PubMed...
  48. Zhao H., Li Z., Hu S., Sun G., Chang J., Zhang Z. (2010): Identification of cytoplasm types in rapeseed (Brassica napus L.) by a multiplex PCR assay. Theoretical and Applied Genetics, 121: 643-650. Go to original source... Go to PubMed...
  49. Zu F., Xia S., Dun X., Zhou Z., Zeng F., Yi B., Wen J., Ma C., Shen J., Tu J., Fu T. (2010): Analysis of genetic model for a recessive genic male sterile line 7-7365AB in Brassica napus L. based on molecular markers. Scientia Agricultura Sinica, 43: 3067-3075. (in Chinese)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.