Czech J. Genet. Plant Breed., 2024, 60(1):50-54 | DOI: 10.17221/26/2023-CJGPB

Induction of direct somatic embryogenesis and genetic stability of somatic embryo-derived plants of broccoliShort Communication

Suzana Pavlović*, Jelena Damnjanović, Zdenka Girek, Lela Belić, Milan Ugrinović
Institute for Vegetable Crops Smederevska Palanka, Smederevska Palanka, Serbia

The influence of the developmental stage of zygotic embryos and the composition and pH of the Gamborg induction medium B5 on the initiation and development of somatic embryos was investigated. The optimal medium was B5 medium with a pH value of 5.0 and without plant growth regulator, at which the highest frequency of somatic embryogenesis (56.67%) and the highest average number of somatic embryos per explant (3.35) were achieved. Somatic embryos appeared directly on the hypocotyls of the explants, without the callus stage. On zygotic embryos in the early cotyledonary phase, three times higher regeneration was achieved compared to larger embryos in the cotyledonary phase. The induction of somatic embryogenesis did not occur during the growth of explants on the medium containinig 2,4-dichlorophenoxyacetic acid, nor on zygotic embryos in the late cotyledonary phase. Random amplified polymorphic DNA analysis showed the genetic stability of somatic embryo-derived plants, which makes this newly established protocol suitable for the regeneration and propagation of desirable broccoli genotypes.

Keywords: embryos germination; immature zygotic embryos; RAPD analysis

Received: February 28, 2023; Revised: May 9, 2023; Accepted: May 10, 2023; Prepublished online: June 19, 2023; Published: November 27, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pavlović S, Damnjanović J, Girek Z, Belić L, Ugrinović M. Induction of direct somatic embryogenesis and genetic stability of somatic embryo-derived plants of broccoli. Czech J. Genet. Plant Breed. 2024;60(1):50-54. doi: 10.17221/26/2023-CJGPB.
Download citation

References

  1. Abdollahi M.R., Ghanzanfari P., Corral-Martínez P., Moi-eni A., Seguí-Simarro J.M. (2012): Enhancing secondary embryogenesis in Brassica napus by selecting hypocotyl-derived embryos and using plant-derived smoke extract in culture medium. Plant Cell, Tissue and Organ Culture, 110: 307-315. Go to original source...
  2. Burbulis N., Kupriene R. (2005): Induction of somatic embryos on in vitro cultured zygotic embryos of spring Brassica napus. Acta Universitatis Latviensis, 691: 137-143.
  3. Burbulis N., Kupriene R., Liakas V. (2007): Somatic embryogenesis and plant regeneration in immature zygotic embryos of Brassica napus. Acta Universitatis Latviensis, 723: 27-35.
  4. Elhiti M., Tahir M., Gulden R.H., Khamiss K., Stasolla C. (2010): Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. Journal of Experimental Botany, 61: 4069-4085. Go to original source... Go to PubMed...
  5. Faisal M., Abdel-Salam E.M., Alatar A.A., Qahtan A.A. (2021): Induction of somatic embryogenesis in Brassica juncea L. and analysis of regenerants using ISSR-PCR and flow cytometer. Saudi Journal of Biological Sciences, 28: 1147-1153. Go to original source... Go to PubMed...
  6. Feher A. (2015): Somatic embryogenesis - Stress induced remodeling of plant cell fate. Biochimica et Biophysica Acta, 4: 385-402. Go to original source... Go to PubMed...
  7. Gaj M.D. (2001): Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana (L.) Heynh. Plant Cell, Tissue and Organ Culture, 64: 39-46. Go to original source...
  8. Gamborg O., Miller R., Ojima K. (1968): Nutrient requirement suspensions cultures of soybean root cells. Experimental Cell Research, 50: 151-158. Go to original source... Go to PubMed...
  9. Gogate S.S., Nadgauda R.S. (2003): Direct induction of somatic embryogenesis from immature zygotic embryo of cashewnut (Anacardium occidentale L.). Scientia Horticulturae, 97: 75-82. Go to original source...
  10. Koh W.L., Loh C.S. (2000): Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid-cycling Brassica napus. Plant Cell Reports, 19: 1177-1183. Go to original source... Go to PubMed...
  11. Konieczny R., Pilarska M., Tuleja M., Salaj T., Ilnicki T. (2010): Somatic embryogenesis and plant regeneration in zygotic embryos of Trifolium nigrescens. Plant Cell, Tissue and Organ Culture, 100: 123-130. Go to original source...
  12. Kumari A., Cheema G.S., Munshi S.K. (2000): A hypocotylderived somatic embryogenic system in Brassica juncea Czern & Coss and its manipulation for enhanced storage lipid accumulation. Plant Cell, Tissue and Organ Culture, 63: 109-120. Go to original source...
  13. Kurczyjska E.U., Gaj M.D., Ujczak A., Mazur E. (2007): Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta, 226: 619-628. Go to original source... Go to PubMed...
  14. Pavlović S., Savić J., Milojević J., Vinterhalter B., Girek Z., Adžić S., Zečević B., Banjac N. (2020): Introduction of the Nicotiana protein kinase (NPK1) gene by combining Agrobacterium-mediated transformation and recurrent somatic embryogenesis to enhance salt tolerance in cauliflower. Plant Cell, Tissue and Organ Culture, 143: 635-651. Go to original source...
  15. Pavlović S., Vinterhalter B., Zdravković-Korać S., Vinterhalter D., Zdravković J., Cvikić D., Mitić N. (2013): Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell, Tissue and Organ Culture, 113: 397-406. Go to original source...
  16. Qin Y., Gao L.H., Pulli S., Guo Y.D. (2006): Shoot differentiation, regeneration of cauliflower and analysis of somaclonal variation by RAPD. Hereditas, 143: 91-98. Go to original source... Go to PubMed...
  17. Qin Y., Li H.L., Guo Y.D. (2007): High-frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Scientia Horticulturae, 111: 203-208. Go to original source...
  18. Quiroz-Figueroa F.R., Rojas-Herrera R., Galaz-Avalos R.M., Loyola-Vargas V.M. (2006): Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 86: 285-301. Go to original source...
  19. Shashi, Bhat V. (2021): Enhanced somatic embryogenesis and plantlet regeneration in Cenchrus ciliaris. In Vitro Cellular and Developmental Biology - Plants, 57: 499-509. Go to original source...
  20. Soma P., Sikdar S.R. (2005): Regeneration of plants from root explant of two Indian cultivars of Brassica campestris L. through somatic embryogenesis. Current Science, 89: 1323-1326.
  21. Von Arnold S., Sabala I., Bozhkov P., Dyachok J., Filonova L. (2002): Development pathways of Somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69: 233-249. Go to original source...
  22. Vujović T., Jevremović D., Marjanović T., Glišić I. (2020): In vitro propagation and medium-term conservation of autochthonous plum cultivar 'Crvena Ranka'. Acta Agriculturae Serbica, 25: 141‒147. Go to original source...
  23. Zhou X., Cao G., Lin R., Sun Y., Li W. (1994): A rapid and efficient DNA extraction method of genus Fagopyrum for RAPD analysis. In: Javornik B., Bohanec B., Kreft I. (eds.): Proc. Impact of Plant Biotechnology on Agriculture, Ljubljana, June 5-7, 1994: 171-175.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.