Czech J. Genet. Plant Breed., 2023, 59(1):23-32
Genetic variability for resistance to fungal pathogens in bread wheatOriginal Paper
- 1 Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
- 2 Plant Breeding and Acclimatization Institute, Radzikow, B³onie, Poland
- 3 Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
Sustainable global wheat production requires wheat varieties, that are sufficiently resistant to the main wheat diseases. The economically important fungal pathogens worldwide include powdery mildew (PM), yellow rust (YR), leaf rust (LR) and blotch causing pathogens including Septoria nodorum blotch (SNB) and Septoria tritici blotch (STB). Here, we present the evaluation of winter wheat varieties of diverse origin against the prevalent local populations of PM, YR, LR, STB and SNB under natural infection conditions through image-based phenotyping in two consecutive years (2019 and 2020). We found several varieties to be resistant against multiple diseases. Following the association mapping, we obtained a total of 206 marker trait associations for all the parameters scored which were condensed to 79 quantitative trait loci (QTLs) (eight QTLs for PM, 25 QTLs for LR, 11 QTLs for YR, 19 QTLs for SNB and eight QTLs for STB) based on the linkage disequilibrium among the molecular markers. The known genes present at these QTLs are discussed in detail. The varieties resistant to multiple diseases, identified with the QTLs and molecular markers can be considered as elite raw material for future wheat breeding.
Keywords: association mapping; breeding; disease resistance; leaf blotch; powdery mildew; rusts; wheat
Received: July 13, 2022; Accepted: August 19, 2022; Prepublished online: October 6, 2022; Published: December 14, 2022 Show citation
Supplementary files:
Download file | 55-2022 CJGPB ESM Tables.xlsx File size: 1.27 MB |
References
- Abdullah A.S., Gibberd M.R., Hamblin J. (2020): Co-infection of wheat by Pyrenophora tritici-repentis and Parastagonospora nodorum in the wheatbelt of Western Australia. Crop and Pasture Science, 71: 119-127.
Go to original source...
- Arif M.A.R., Börner A. (2020): An SNP based GWAS analysis of seed longevity in wheat. Cereal Research Communications, 48: 149-156.
Go to original source...
- Arif M.A.R., Nagel M., Neumann K., Kobiljski B., Lohwasser U., Börner A. (2012a): Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica, 186: 1-13.
Go to original source...
- Arif M.A.R., Nagel M., Kobiljski B., Neumann K., Lohwasser U., Börner A. (2012b): An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica, 188: 409-417.
Go to original source...
- Arif M.A.R., Waheed M.Q., Lohwasser U., Shokat S., Alqudah A.M., Volkmar C., Börner A. (2022): Genetic insight into the insect resistance in bread wheat exploiting the untapped natural diversity. Frontiers in Genetics, 13: 898905.
Go to original source...
Go to PubMed...
- Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007): TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23: 2633-2635.
Go to original source...
Go to PubMed...
- Chartrain L., Joaquim P., Berry S.T., Arraiano L.S., Azanza F., Brown J.K.M. (2005a): Genetics of resistance to septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theoretical and Applied Genetics, 110: 1138-1144.
Go to original source...
Go to PubMed...
- Chartrain L., Berry S., Brown J. (2005b): Resistance of wheat line Kavkaz-K4500 L. 6. A. 4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology, 95: 664-671.
Go to original source...
Go to PubMed...
- Chen X. (2005): Epidemiology and control of stripe rust [Puccinia striiformis f.sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27: 314-337.
Go to original source...
- Cheng P., Chen X. (2010): Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377 s. Theoretical and Applied Genetics, 121: 195-204.
Go to original source...
Go to PubMed...
- Chhetri M. (2015): Molecular Mapping and Genetic Characterization of Rust Resistance in Wheat. Sydney, University of Sydney.
- Dababat A., Arif M.A.R., Toktay H., Atiya O., Shokat S., Gul E., Imren M., Singh S. (2021): A GWAS to identify the cereal cyst nematode (Heterodera filipjevi) resistance loci in diverse wheat prebreeding lines. Journal of Applied Genetics, 62: 93-98.
Go to original source...
Go to PubMed...
- Dean R., Van Kan J.A., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J. (2012): The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13: 414-430.
Go to original source...
- Dimmock J., Gooding M. (2002): The influence of foliar diseases, and their control by fungicides, on the protein concentration in wheat grain: A review. Journal of Agricultural Sciences, 138: 349-366.
Go to original source...
- Duplessis S., Joly D., Dodds P. (2012): Rust effectors. In: Martin F., Kamoun S. (eds): Effectors in Plant-Microbe Interactions. West Sussex, John Wiley & Sons, Inc.
Go to original source...
- Feng J., Wang M., Chen X., See D., Zheng Y., Chao S., Wan A. (2015): Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology, 105: 1206-1213.
Go to original source...
Go to PubMed...
- Figueroa M., Hammond-Kosack K.E., Solomon P.S. (2018): A review of wheat diseases - A field perspective. Molecular Plant Pathology, 19: 1523-1536.
Go to original source...
Go to PubMed...
- Fones H., Gurr S. (2015): The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genetics and Biology, 79: 3-7.
Go to original source...
Go to PubMed...
- Francki M.G. (2013): Improving Stagonospora nodorum resistance in wheat: A review. Crop Science, 53: 355-365.
Go to original source...
- Hassan R., Waheed M.Q., Shokat S., Arif M.A.R., Tariq R., Arif M., Arif A. (2020): Estimation of genomic diversity using sequence related amplified polymorphism (SRAP) markers in a mini core collection of wheat germplasm from Pakistan. Cereal Research Communications, 48: 33-40.
Go to original source...
- Hwang J.U., Song W.Y., Hong D., Ko D., Yamaoka Y., Jang S., Yim S., Lee E., Khare D., Kim K. (2016): Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Molecular Plant, 9: 338-355.
Go to original source...
Go to PubMed...
- Kang Y., Barry K., Cao F., Zhou M. (2020a): Genome-wide association mapping for adult resistance to powdery mildew in common wheat. Molecular Biology Reporter, 47: 1241-1256.
Go to original source...
Go to PubMed...
- Kang Y., Zhou M., Cao F., Barry K. (2020b): Mechanisms of powdery mildew resistance of wheat - A review of molecular breeding. Plant Pathology, 69: 601-617.
Go to original source...
- Kobiljski B., Quarrie S., Dencic S., Kirby J., Iveges M. (2002): Genetic diversity of the Novi Sad wheat core collection revealed by microsatellites. Cellular and Molecular Biology Letters, 7: 685-694.
- Krattinger S.G., Lagudah E.S., Spielmeyer W., Singh R.P., Huerta-Espino J., McFadden H., Bossolini E., Selter L.L., Keller B. (2009): A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323: 1360-1363.
Go to original source...
Go to PubMed...
- Lapin D., Van den A.G. (2013): Susceptibility to plant disease: More than a failure of host immunity. Trends in Plant Sciences, 18: 546-554.
Go to original source...
Go to PubMed...
- Li C.X., Xu W.G., Guo R., Zhang J.Z., Qi X.I., Hu L., Zhao M. (2018): Molecular marker assisted breeding and genome composition analysis of Zhengmai 7698, an elite winter wheat cultivar. Scientific Reports, 8: 1-8.
Go to original source...
Go to PubMed...
- Line R.F. (2002): Stripe rust of wheat and barley in North America: A retrospective historical review. Annual Review of Phytopathology, 40: 75-118.
Go to original source...
Go to PubMed...
- Marone D., Russo M.A., Laidò G., De Vita P., Papa R., Blanco A., Gadaleta A., Rubiales D., Mastrangelo A.M. (2013): Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: From consensus regions to candidate genes. BMC Genomics, 14: 1-17.
Go to original source...
Go to PubMed...
- McIntosh R.A., Wellings C.R., Park R.F. (1995): Wheat rusts: An atlas of resistance genes. Melbourne, CSIRO Publishing.
Go to original source...
- McIntosh R., Yamazaki Y., Dubcovsky J., Rogers W., Morris C., Sommers D. (2008): Catalogue of gene symbols for wheat: 2008. In: Appels R., Eastwood R., Lagudah E., Langridge P., Mackay M., McIntyre L., et al. (eds.): Proceedings of the 11th International Wheat Genetics. Sydney, Sydney University Press.
- Milus E.A., Kristensen K., Hovmøller M.S. (2009): Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f.sp. tritici causing stripe rust of wheat. Phytopathology, 99: 89-94.
Go to original source...
Go to PubMed...
- Mohler V., Stadlmeier M. (2019): Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). Journal of Applied Genetics, 60: 291-300.
Go to original source...
Go to PubMed...
- Pinto da Silva G.B., Zanella C.M., Martinelli J.A., Chaves M.S, Hiebert C.W., McCallum B.D., Boyd L.A. (2018): Quantitative trait loci conferring leaf rust resistance in hexaploid wheat. Phytopathology, 108: 1344-1354.
Go to original source...
Go to PubMed...
- Pritchard J.K., Stephens M., Donnelly P. (2000): Inference of population structure using multilocus genotype data. Genetics, 155: 945-959.
Go to original source...
Go to PubMed...
- Ray D.K., Mueller N.D., West P.C., Foley J.A. (2013): Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8: e66428.
Go to original source...
Go to PubMed...
- Riaz A., KockAppelgren P., Hehir J.G., Kang J., Meade F., Cockram J., Milbourne D., Spink J., Mullins E., Byrne S. (2020): Genetic analysis using a multi-parent wheat population identifies novel sources of Septoria Tritici blotch resistance. Genes, 11: 887.
Go to original source...
Go to PubMed...
- Roelfs A.P., Singh R.P., Saari E.E. (1992): Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, CIMMYT.
- Singh P.K., Singh S., Deng Z., He X., Kehel Z., Singh R.P. (2019): Characterization of QTLs for seedling resistance to tan spot and Septoria nodorum blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. International Journal of Molecular Sciences, 20: 5432.
Go to original source...
Go to PubMed...
- Sui X., Wang M., Chen X. (2009): Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology, 99: 1209-1215.
Go to original source...
Go to PubMed...
- Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L. (2014): Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12: 787-796.
Go to original source...
Go to PubMed...
- Wolverton S.E., Wu J. (2019): Comprehensive Dermatologic Drug Therapy. Philadephia, Elsevier Health Sciences.
- Yu J., Pressoir G., Briggs W.H., Bi I.V., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B. (2006): A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38: 203.
Go to original source...
Go to PubMed...
- Zhang X., Han D., Zeng Q., Duan Y., Yuan F., Shi J., Wang Q., Wu J., Huang L., Kang Z. (2013): Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS ONE, 8: e57885.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.