Czech J. Genet. Plant Breed., 2025, 61(2):55-66 | DOI: 10.17221/93/2024-CJGPB

Association ana­lysis of the molecular characteristics and floral traits of Iris × germanicaOriginal Paper

Feng Tian1, Ya Tian1, Fang Yu1, Jinsen Qian1, Feijian Wang1, Xue Li1, Tongyin Li2, Xiaofei Zhang3, Dazhuang Huang1, Xiaojie Zhao1,*
1 Hebei Agricultural University, Baoding, P.R. China
2 Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, USA
3 Hebei Academy of Forestry and Grassland Science, Shijiazhuang, China

Iris × germanica L. (bearded iris) is a popular ornamental plant with numerous commercially important cultivars; however, little is known about the genetic diversity and population structure of the species, as limited DNA markers have been explored. In this study, 34 722 expressed sequence tag (EST)-simple sequence repeat (SSR) loci were identified from RNA sequencing data. The most abundant SSR motifs belonged to the tri-nucleotide type, of which the most common were AGG/CCT followed by AAG/CTT. Overall, 50 primer pairs derived from these EST-SSRs were randomly selected and synthesized, and 22 primer pairs with good polymorphism effects were used for the following experiment. Correlation analysis of nine floral traits showed that most floral traits had significant correlations with each other. Association analysis between SSR molecular markers and nine floral traits showed that 11 EST-SSR markers were associated with 3–6 floral traits. The cluster tree constructed by using the unweighted pair group method demonstrated that the cultivars that had the same parents or similar colour were clustered together. The genotypic relations of most cultivars were consistent with their pedigree-based relationships. The EST-SSR loci identified in this study will facilitate the exploitation of genetic resources and molecular breeding of I. × germanica.

Keywords: bearded iris; EST-SSR markers; flower; genetic diversity; RNA-Seq

Received: August 6, 2024; Revised: December 5, 2024; Accepted: December 6, 2024; Prepublished online: February 3, 2025; Published: April 15, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tian F, Tian Y, Yu F, Qian J, Wang F, Li X, et al.. Association ana­lysis of the molecular characteristics and floral traits of Iris × germanica. Czech J. Genet. Plant Breed. 2025;61(2):55-66. doi: 10.17221/93/2024-CJGPB.
Download citation

Supplementary files:

Download fileTian_ESM.pdf

File size: 912.47 kB

References

  1. Agarwal M., Shrivastava N., Padh H. (2008): Advances in molecular marker techniques and their applications in plant science. Plant Cell Report, 27: 617-631. Go to original source... Go to PubMed...
  2. Annadurai R.S., Neethiraj R., Jayakumar V., Damodaran A.C., Rao A.S.N., Katta M.A., Gopinathan S., Sarma S.P., Senthilkumar V., Niranjan V., GopinathA., Mugasimangalam R.C. (2013): De novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS ONE, 8: e56217. Go to original source... Go to PubMed...
  3. Attari S.E., Shoor M., Neghab M.G., Tehranifar A., Shafaroudi S.M. (2016): Evaluation of genetic diversity of iris genotypes (Iris spp.) using ISSR. Journal of Horticultural Science, 30: 376-382.
  4. Azimi M., Sadeghian S., Ahari V.R., Khazaei F., Hafashjani A.F. (2012): Genetic variation of Iranian Iris species using morphological characteristics and RAPD markers. International Journal of AgriScience, 2: 875-889
  5. Bouck A., Vision T. (2010): The molecular ecologist's guide to expressed sequence tags. Molecular Ecology, 16: 907-924. Go to original source... Go to PubMed...
  6. Brachi B., Faure N., Horton M., Flahauw E., Vazquez A., Nordborg M., Roux F. (2010): Linkage and association mapping of Arabidopsis thaliana lowering time in nature. PLoS Genetics, 6: e1000940. Go to original source... Go to PubMed...
  7. Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007): TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23: 2633-2635. Go to original source... Go to PubMed...
  8. Bublyk O., Parnikoza I., Kunakh V. (2021): Assessing the levels of polymorphism and differentiation in Iris pumila L. populations using three types of PCR markers. Cytology and Genetics, 55: 36-46. Go to original source...
  9. Butiuc-Keul A., Coste A., Postolache D., Laslo V., Halmagyi A., Cristea V., Farkas A.A. (2022): Molecular characterization of prunus cultivars from Romania by microsatellite markers. Horticulturae, 8: 291. Go to original source...
  10. Chavhan R.L., Sable S., Narwade A.V., Hinge V.R., Kalbande B.B., Mukherjee A.K., Chakrabarty P.K., Kadam U.S. (2023): Multiplex molecular marker-assisted analysis of significant pathogens of cotton (Gossypium sp.). Biocatalysis and Agricultural Biotechnology, 47: 102557. Go to original source...
  11. Desai H., Hamid R., Ghorbanzadeh Z., Bhut N., Padhiyar S.M., Kheni J., Tomar R.S. (2021): Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Scientific Reports, 11: 20620. Go to original source... Go to PubMed...
  12. Dieffenbach C.W., Lowe T.M., Dveksler G.S. (1993): General concepts for PCR primer design. PCR Methods and Applications, 3: 30-37. Go to original source... Go to PubMed...
  13. Doyle J.J., Doyle J.L. (1987): A rapid DNA isolation method for small quantities of fresh tissues. Phytochemical Bulletin, 19: 11-15.
  14. Gilmore B., Bassil N., Nyberg A., Knaus B., Smith D., Barney D., Hummer K. (2013): Microsatellite marker development in Peony using Next Generation Sequencing. Journal of the American Society for Horticultural Science, 138: 64-74. Go to original source...
  15. Guo Q., Guo L., Zhang L., Zhang L.X., Ma H., Guo D., Huo X. (2017): Construction of a genetic linkage map in tree peony (paeonia sect. moutan) using simple sequence repeat (SSR) markers. Scientia Horticulturae, 219: 294-301. Go to original source...
  16. Hinge V.R., Shaikh I.M., Chavhan R.L., Deshmukh A.S., Shelake R.M., Ghuge S.A., Dethe A.M., Suprasanna P., Kadam U.S. (2022): Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Scientific Reports, 12: 7979. Go to original source... Go to PubMed...
  17. Ikinci N., Hall T., Lledó M.D., Clarkson J.J., Tillie N., Seisums A., Saito T., Harley M., Chase M.W. (2011): Molecular phylogenetics of the juno irises, Iris subgenus Scorpiris (Iridaceae), based on six plastid markers. Botanical Journal of the Linnean Society, 167: 281-300. Go to original source...
  18. Jiang K., Gao H., Xu N., Tsang E.P.K., Chen X. (2011): A set of microsatellite primers for Zostera japonica (Zosteraceae). American Journal of Botany, 98: e236-e238. Go to original source... Go to PubMed...
  19. Lawson M.J., Zhang L. (2006): Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 7: R14. Go to original source... Go to PubMed...
  20. Lee O.N., Park H.Y. (2017): Assessment of genetic diversity in cultivated radishes (Raphanus sativus) by agronomic traits and SSR markers. Scientia Horticulturae, 223: 19-30. Go to original source...
  21. Li F., Sun Y., Liu C., Yuan Y., Zheng L., Chen X., Bao J. (2020): Genetic diversity and population structure in bearded iris cultivars derived from Iris × germanica L. and its related species I. pumila L., I. variegata L., I. pallida Lam. Genetic Resources and Crop Evolution, 67: 2161-2172. Go to original source...
  22. Liu K., Muse S.V. (2005): Power Marker: An integrated analysis environment for genetic analysis. Bioinformatics, 21: 2128-129. Go to original source... Go to PubMed...
  23. Liu Z., Zhang J., Wang Y., Wang H., Wang L., Zhang L., Xiong M., He W., Yang S., Chen Q., Chen T., Luo Y., Zhang Y., Tang H., Wang X. (2022): Development and cross-species transferability of novel genomic-SSR markers and their utility in hybrid identification and trait association analysis in Chinese Cherry. Horticulturae, 8: 222. Go to original source...
  24. Mazzucato A., Papa R., Bitocchi E., Mosconi P., Nanni L., Negri V., Picarella M.E., Siligato F., Soressi G.P., Tiranti B., Veronesi F. (2008): Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116: 657-669. Go to original source... Go to PubMed...
  25. Metzgar D., Bytof J., Wills C. (2000): Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research, 10: 72-80.
  26. Moores W (2001): Progenitors in modern reblooming irises. Bulletin of American Iris Society, 320: 28-30.
  27. Morgante M., Hanafey M., Powell W. (2002): Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nature Genetics, 30: 194-200. Go to original source... Go to PubMed...
  28. Niswonger D. (2003): Hybridizing tall bearded iris. Bulletin of American Iris Society, 330: 34-46.
  29. Paun O., Schönswetter P. (2012): Amplified fragment length polymorphism: An invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods in Molecular Biology, 862: 75-87. Go to original source... Go to PubMed...
  30. Rasul K.S., Majeed H.O., Faraj J.M., Lateef D.D., Tahir M.A. (2024): Genetic diversity and relationships among Iris aucheri genotypes determined via ISSR and CDDP markers. Genetic Resources and Crop Evolution, 2024: 0925-9864. Go to original source...
  31. Riangwong K., Wanchana S., Aesomnuk W., Saensuk C., Nubankoh P., Ruanjaichon V., Kraithong T., Toojinda T., Vanavichit A., Arikit S. (2020): Mining and validation of novel genotyping-by sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts (Cocos nucifera L.) in Thailand. Horticulture Research, 7: 156. Go to original source... Go to PubMed...
  32. Rohlf F.J. (2005): NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.2. New York, State University of New York.
  33. Ronoh R., Linde M., Winkelmann T., Abukutsa-Onyango M., Fufa Dinssa F.F., Debener T. (2018): Development of next-generation sequencing (NGS)-based SSRs in African nightshades: Tools for analyzing genetic diversity for conservation and breeding. Scientia Horticulturae, 235: 152-159. Go to original source...
  34. Santos C., Almeida N.P., Alves M.L., Horre R., Krezdorn N., Leitão S.T., Aznar-Fernández T., Rotter B., Winter P., Rubiales D., Patto M.C.V. (2018): First genetic linkage map of Lathyrus cicera based on RNA sequencing-derived markers: Key tool for genetic mapping of disease resistance. Horticulture Research, 5: 45. Go to original source... Go to PubMed...
  35. ©arhanová P., Pfanzel S., Brandt R., Himmelbach A., Blattner F.R. (2018): SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecology and Evolution, 8: 10817-10833. Go to original source... Go to PubMed...
  36. Spoon D. (2008): Plicata locus color patterns in bearded irises. Bulletin of American Iris Society, 349: 95-107.
  37. Sturtevant A.H. (1961): Iris genetics. Engineering and Science, 1961: 16-17. Go to original source...
  38. Sturtevant A.H., Randolph L.F. (1945): Iris genetics. Bulletin of American Iris Society, 99: 54-66.
  39. Sun M., Li M.R., Shi F., Li L., Liu Y., Li L.F., Xiao H. (2012): Genomic and EST-derived microsatellite markers for Iris laevigata (Iridaceae) and other congeneric species. American Journal of Botany, 99: e286-e288. Go to original source... Go to PubMed...
  40. Taheri S., Abdullah T.L., Yusop M.R., Hanafi M.M., Sahebi M., Azizi P., Shamshiri R.R. (2018): Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules, 23: 399. Go to original source... Go to PubMed...
  41. Taheri S., Abdullah T.L., Rafii M.Y., Harikrishna J.A., Werbrouck S.P.O., Teo C.H., Sahebi M., Azizi P. (2019): De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Scientific Reports, 9: 3047. Go to original source... Go to PubMed...
  42. Tang S., Okashah R.A., Cordonnier-Pratt M.M., Pratt L.H., Johnson V.E., Taylor C.A., Arnold M.L., Knapp S. (2009): EST and EST-SSR marker resources for Iris. BMC Plant Biology, 9: 72. Go to original source... Go to PubMed...
  43. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. (2001): Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11: 1441-1452. Go to original source... Go to PubMed...
  44. The American Iris Society (2019): Iris Classification. Available at www.irises.org/ gardeners/care-classification/classification/ (accessed 14 February 2024).
  45. Thiel T., Michalek W., Varshney R., Graner A. (2003): Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106: 411-422. Go to original source... Go to PubMed...
  46. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. (2012): Primer3 - new capabilities and interfaces. Nucleic Acids Research, 40: e115. Go to original source... Go to PubMed...
  47. Upadhyay A., Kadam U.S., Priya C.M., Karibasappa G.S. (2010a): Microsatellite and RAPD analysis of grape (Vitis spp.) accessions and identification of duplicates/misnomers in germplasm collection. Indian Journal of Horticulture, 67: 8.
  48. Upadhyay A., Kadam U.S., Priya C.M., Karibasappa G.S. (2010b): Microsatellite analysis to differentiate clones of Thompson seedless grapevine. Indian Journal of Horticulture, 67: 260-263.
  49. Varshney R.K., Graner A., Sorrells M.E. (2005): Genetic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 23: 48-55. Go to original source... Go to PubMed...
  50. Wang X., Wang L. (2016): GMATA: An integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science, 7: 1350. Go to original source... Go to PubMed...
  51. Wang Y., Jia H., Shen Y., Zhao H., Yang Q., Zhu C., Sun D., Wang C., Zhou C., Jiao Y., Chai C., Yan L., Li X., Jia H., Gao Z. (2020): Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. Horticulture Research, 7: 53. Go to original source... Go to PubMed...
  52. Wei Z., Sun Z., Cui B., Zhang Q., Xiong M., Wang X., Zhou D. (2016): Transcriptome analysis of colored calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing: De novo assembly, annotation and EST-SSR marker development. Peer J, 4: e2378. Go to original source... Go to PubMed...
  53. Williams R.C. (1989): Restriction fragment length polymorphism (RFLP). American Journal of Physical Anthropology, 32: 159-184. Go to original source...
  54. Wu J., Cai C., Cheng F., Cui H., Zhou H. (2014): Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Molecular Breeding, 34: 1853-1866. Go to original source...
  55. Xiao Y., Hu Y., Liu M., Chen X. (2012): Isolation and characterization of polymorphic microsatellites in Iris ensata (Iridaceae). American Journal of Botany, 99: e498-e500. Go to original source... Go to PubMed...
  56. Yang Y., He R., Zheng J., Hu Z., Wu J., Leng P. (2020): Development of EST-SSR markers and association mapping with floral traits in Syringa oblata. BMC Plant Biology, 20: 436. Go to original source... Go to PubMed...
  57. Yang Z., Peng Z., Yang H. (2016): Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.). Genetics and Molecular Research, 15: 15017509. Go to original source... Go to PubMed...
  58. Ye Y., Feng L., Liang X. (2019): Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp). Molecular Breeding, 39: 26. Go to original source...
  59. Yu J., Buckler E.S. (2006): Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 17: 155-160. Go to original source... Go to PubMed...
  60. Zhang G., Han Y., Wang H., Wang Z., Xiao H., Sun M. (2021): Phylogeography of Iris loczyi (Iridaceae) in Qinghai-Tibet Plateau revealed by chloroplast DNA and microsatellite markers. AoB PLANTS, 13: plab070. Go to original source...
  61. Zhen Q., Fang T., Peng Q., Zhao L., Owiti A. (2018): Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Horticulture Research, 5: 14. Go to original source... Go to PubMed...
  62. Zhu J., Zhang J., Jiang M., Wang W., Jiang J., Li Y., Yang L. Zhou X. (2021): Development of genome-wide SSR markers in rapeseed by next generation sequencing. Gene, 798: 145798. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.