Czech J. Genet. Plant Breed., 2023, 59(4):205-218 | DOI: 10.17221/72/2022-CJGPB

Selection of suitable reference genes in Paulownia fortunei (Seem.) Hemsl. under different tissues and abiotic stresses for qPCR normalizationOriginal Paper

Jiang Su, Kanghua Xian, Chuanming Fu, Jinxiang He, Baojun Liu, Ningzhen Huang*
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi, P.R. China

By choosing appropriate candidate reference genes (CRGs) and standardizing qPCR data, more accurate experimental data can be obtained. Herein, the expression stability of alpha-tubulin1 (TUA1), beta-tubulin (TUB), beta-tubulin 1 (TUB1), beta-tubulin 5 (TUB5), actin 1 (ACT1), actin 97 (ACT97), molecular chaperone dnaj (DNAJ), adenine phosphoribosyl transferase (APT), and histone H4 (HIS4) genes from Paulownia fortunei (Seem.) Hemsl. under different experimental conditions (different tissues, drought, salinity, Cd, and Cr treatments) was assessed with four statistical tools: RefFinder, BestKeeper, NormFinder, and geNorm. Notably, TUA1 and TUB5 were identified as CRGs for different tissues, ACT97 and TUB1 for drought treatment, ACT97 and APT for salinity treatment, TUB1 and ACT97 for Cd treatment, and DNAJ, TUB1 and TUB5 for Cr treatment. Furthermore, the results of “total” group, V4/V5 > 0.15 and V5/V6 < 0.15 revealed that the CRGs or gene combinations, which could meet all the test conditions, were not easy to identify. To further verify the reliability of CRGs, the expression levels of paulownia fortunei cellulose synthase A catalytic subunit2 (PfCesA2) and paulownia fortunei glutathione reductase (GR) genes were analysed. The expression patterns were different when the unstable CRGs were used for normalization compared to when the stable CRGs and combination were used for normalization. This study will lay a foundation for study on the expression levels of key genes from P. fortunei seedlings.

Keywords: drought treatment; heavy metal; housekeeping genes; qRT-PCR; salinity treatment

Received: September 7, 2022; Accepted: March 23, 2023; Prepublished online: June 9, 2023; Published: September 11, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Su J, Xian K, Fu C, He J, Liu B, Huang N. Selection of suitable reference genes in Paulownia fortunei (Seem.) Hemsl. under different tissues and abiotic stresses for qPCR normalization. Czech J. Genet. Plant Breed. 2023;59(4):205-218. doi: 10.17221/72/2022-CJGPB.
Download citation

Supplementary files:

Download fileSu_ESM.pdf

File size: 696 kB

References

  1. Andersen C.L., Jensen J.L., Ørntoft T.F. (2004): Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64: 5245-5250. Go to original source... Go to PubMed...
  2. Balestrini R., Zhan H., Liu H., Wang T., Liu L., Ai W., Lu X. (2022): Selection and validation of reference genes for quantitative real-time PCR of Quercus mongolica Fisch. ex Ledeb under abiotic stresses. PLoS ONE, 17: e0267126. Go to original source... Go to PubMed...
  3. Chen D., Pan X., Xiao P., Farwell M.A., Zhang B. (2011): Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. Journal of Cellular Physiology, 226: 2469-2477. Go to original source... Go to PubMed...
  4. Chen J., Huang Z., Huang H., Wei S., Liu Y., Jiang C., Zhang J., Zhang C. (2017a): Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress. Scientific Reports, 7: 46494. Go to original source... Go to PubMed...
  5. Chen X., Mao Y., Huang S., Ni J., Lu W., Hou J., Wang Y., Zhao W., Li M., Wang Q., Wu L. (2017b): Selection of suitable reference genes for quantitative real-time PCR in Sapium sebiferum. Frontiers in Plant Science, 8: 00637. Go to original source... Go to PubMed...
  6. Clemens S., Palmgren M.G., Krämer U. (2002): A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science, 7: 309-315. Go to original source... Go to PubMed...
  7. Desprez T., Juraniec M., Crowell E.F., Jouy H., Pochylova Z., Parcy F., Höfte H., Gonneau M., Vernhettes S. (2007): Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104: 15572-15577. Go to original source... Go to PubMed...
  8. Dong Y., Fan G., Zhao Z., Deng M. (2014): Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei. Functional & Integrative Genomics, 14: 479-491. Go to original source... Go to PubMed...
  9. Ekmekçi Y., Tanyolaç D., Ayhan B. (2008): Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165: 600-611. Go to original source... Go to PubMed...
  10. Fei X., Shi Q., Yang T., Fei Z., Wei A. (2018): Expression stabilities of ten candidate reference genes for RT-qPCR in Zanthoxylum bungeanum Maxim. Molecules, 23: 802. Go to original source... Go to PubMed...
  11. Gill S.S., Anjum N.A., Hasanuzzaman M., Gill R., Trivedi D.K., Ahmad I., Pereira E., Tuteja N. (2013): Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70: 204-212. Go to original source... Go to PubMed...
  12. Gururani M., Li Z., Lu H., He Z., Wang C., Wang Y., Ji X. (2019): Selection of appropriate reference genes for quantitative real-time reverse transcription PCR in Betula platyphylla under salt and osmotic stress conditions. PLoS ONE, 14: e0225926. Go to original source... Go to PubMed...
  13. Hasanuzzaman M., Bhuyan M.H.M.B., Anee T.I., Parvin K., Nahar K., Mahmud J.A., Fujita M. (2019): Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8: 384. Go to original source... Go to PubMed...
  14. Hu R., Fan C., Li H., Zhang Q., Fu Y.-F. (2009): Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biology, 10. Go to original source... Go to PubMed...
  15. Huggett J., Dheda K., Bustin S., Zumla A. (2005): Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity, 6: 279-284. Go to original source... Go to PubMed...
  16. Jain M., Tian C., Jiang Q., Wang F., Wang G.-L., Xu Z.-S., Xiong A.-S. (2015): Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS ONE, 10: e0117569. Go to original source... Go to PubMed...
  17. Leong D.T., Gupta A., Bai H.F., Wan G., Yoong L.F., Too H., Chew F.T., Hutmacher D.W. (2007): Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials, 28: 203-210. Go to original source... Go to PubMed...
  18. Li M., Wang F., Jiang Q., Wang G., Tian C., Xiong A. (2016): Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Frontiers in Plant Science, 7: 313. Go to original source... Go to PubMed...
  19. Lin T., Rao M., Lu H., Chiou C., Lin S., Chao H., Zheng Z., Cheng H., Lee T. (2018): A role for glutathione reductase and glutathione in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress. Physiologia Plantarum, 162: 35-48. Go to original source... Go to PubMed...
  20. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408. Go to original source... Go to PubMed...
  21. Maleki S.S., Mohammadi K., Movahedi A., Wu F., Ji K.S. (2020): Increase in cell wall thickening and biomass production by overexpression of PmCesA2 in poplar. Frontiers in Plant Science, 11: 110. Go to original source... Go to PubMed...
  22. Mutwil M., Debolt S., Persson S. (2008): Cellulose synthesis: A complex complex. Current Opinion in Plant Biology, 11: 252-257. Go to original source... Go to PubMed...
  23. Pang X., Bu J., Zhao J., Liu M. (2016): Expression stabilities of candidate reference genes for RT-qPCR in Chinese jujube (Ziziphus jujuba Mill.) under a variety of conditions. PLoS ONE, 11: e0154212. Go to original source... Go to PubMed...
  24. Petriccione M., Mastrobuoni F., Zampella L., Scortichini M. (2015): Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae. Scientific Reports, 5: 16961. Go to original source... Go to PubMed...
  25. Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004): Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnology Letters, 26: 509-515. Go to original source... Go to PubMed...
  26. Raja V., Wani U.M., Wani Z.A., Jan N., Kottakota C., Reddy M.K., Kaul T., John R. (2021): Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. Plant Cell Reports, 41: 619-637. Go to original source... Go to PubMed...
  27. Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodriguez-Serrano M., del Rio L.A., Palma J.M. (2006): Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist, 170: 43-52. Go to original source... Go to PubMed...
  28. Schmid H., Cohen C.D., Henger A., Irrgang S., Schlöndorff D., Kretzler M. (2003): Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney International, 64: 356-360. Go to original source... Go to PubMed...
  29. Shen J., Wu Y., Jiang Z., Xu Y., Zheng T., Wang J., Cheng T., Zhang Q., Pan H. (2020): Selection and validation of appropriate reference genes for gene expression studies in Forsythia. Physiology and Molecular Biology of Plants, 26: 173-188. Go to original source... Go to PubMed...
  30. Sun H., Li L., Wang X., Wu S., Wang X. (2011): Ascorbate-glutathione cycle of mitochondria in osmoprimed soybean cotyledons in response to imbibitional chilling injury. Journal of Plant Physiology, 168: 226-232. Go to original source... Go to PubMed...
  31. Tzvetkova N., Miladinova K., Ivanova K., Gebrekidan A., Geneva M., Markovska Y. (2015): Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil. Journal of Environmental Biology, 36 (Special Issue): 145-151.
  32. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. (2002): Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3: research0034. Go to original source...
  33. Wan H., Zhao Z., Qian C., Sui Y., Malik A.A., Chen J. (2010): Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry, 399: 257-261. Go to original source... Go to PubMed...
  34. Wang B., Duan H., Chong P., Su S., Shan L., Yi D., Wang L., Li Y. (2020): Systematic selection and validation of suitable reference genes for quantitative real-time PCR normalization studies of gene expression in Nitraria tangutorum. Scientific Reports, 10: 15891. Go to original source... Go to PubMed...
  35. Wang J., Li W., Zhang C., Ke S. (2010): Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei. Journal of Environmental Sciences, 22: 1916-1922. Go to original source... Go to PubMed...
  36. Wang S., Zhang S. (2022): Selection of the reference gene for expression normalization in Salsola ferganica under abiotic stress. Genes, 13: 571. Go to original source... Go to PubMed...
  37. Wang Z., Zhao Z., Fan G., Dong Y., Deng M., Xu E., Zhai X., Cao H. (2018): A comparison of the transcriptomes between diploid and autotetraploid Paulownia fortunei under salt stress. Physiology and Molecular Biology of Plants, 25: 1-11. Go to original source... Go to PubMed...
  38. Wei L., Miao H., Zhao R., Han X., Zhang T., Zhang H. (2012): Identification and testing of reference genes for sesame gene expression analysis by quantitative real-time PCR. Planta, 237: 873-889. Go to original source... Go to PubMed...
  39. Wu K., Xu E., Fan G., Niu S., Zhao Z., Deng M., Dong Y. (2014): Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress. PLoS ONE, 9: e113313. Go to original source... Go to PubMed...
  40. Wu Y., Tian Q., Huang W., Liu J., Xia X., Yang X., Mou H. (2020): Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47: 2951-2962. Go to original source... Go to PubMed...
  41. Yang Q., Yin J., Li G., Qi L., Yang F., Wang R., Li G. (2014): Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Molecular Biology Reports, 41: 2325-2334. Go to original source... Go to PubMed...
  42. Ye J., Jin C., Li N., Liu M., Fei Z., Dong L., Li L., Li Z. (2018): Selection of suitable reference genes for qRT-PCR normalisation under different experimental conditions in Eucommia ulmoides Oliv. Scientific Reports, 8: 15043. Go to original source... Go to PubMed...
  43. Zhang K., Li M., Cao S., Sun Y., Long R., Kang J., Yan L., Cui H. (2019): Selection and validation of reference genes for target gene analysis with quantitative real-time PCR in the leaves and roots of Carex rigescens under abiotic stress. Ecotoxicology and Environmental Safety, 168: 127-137. Go to original source... Go to PubMed...
  44. Zhu J., He F., Song S., Wang J., Yu J. (2008): How many human genes can be defined as housekeeping with current expression data? BMC Genomics, 9: 172. Go to original source... Go to PubMed...
  45. Zhu P., Ma Y., Zhu L., Chen Y., Li R., Ji K. (2019): Selection of suitable reference genes in Pinus massoniana Lamb. under different abiotic stresses for qPCR normalization. Forests, 10: 632. Go to original source...
  46. Zhuang H., Fu Y., He W., Wang L., Wei Y. (2015): Selection of appropriate reference genes for quantitative real-time PCR in Oxytropis ochrocephala Bunge using transcriptome datasets under abiotic stress treatments. Frontiers in Plant Science, 6: 475. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.