Czech J. Genet. Plant Breed., 2023, 59(1):43-53 | DOI: 10.17221/49/2022-CJGPB

Further fine mapping and candidate gene prediction for a new restoring fertility gene Rf(fa) in riceOriginal Paper

Yu Li*,1, Xiaomi Chen1, Tao Lan1, Jing Zhang2, Ziheng Chen2, Wenting Yang3, Xinmei Lin3
1 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
2 College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
3 Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, P.R. China

Rf(fa), a new restoring fertility gene in rice, was previously located to a large region on Chromosome 10. The large number of genes within the region made cloning of Rf(fa) difficult. To perform the cloning and further elucidate the molecular mechanism, we reconstructed a mapping segregation population (BC1F1) of 12 000 plants. Using the population and polymorphism of simple sequence repeat (SSR) molecular markers, we finally mapped Rf(fa) between the two SSR molecular markers MM2000 and RM25658, within a 78.87 kb region. By de novo sequencing of a restoring line of CMS-FA hybrid rice, we obtained the genomic sequence of the mapping region, which provided the basis for the prediction of the candidate gene(s) of the target gene and for the comparison of genomic sequence differences between wild and cultivated rice. Within the mapping region, the genomic sequence of the wild rice was significantly different from that of cultivated rice. There were ten genes in the final mapping region. A pentatricopeptide repeat (PPR) protein gene was predicted as the candidate gene of Rf(fa). Our results laid a solid foundation for the final cloning and molecular mechanism analysis of the gene. The identified molecular markers tightly linked to Rf(fa) will facilitate the marker assisted selection in breeding of CMS-FA hybrid rice.

Keywords: fertility restorer; gene fine mapping; prediction of candidate gene(s); rice

Received: June 20, 2022; Accepted: September 9, 2022; Prepublished online: October 10, 2022; Published: December 14, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Li Y, Chen X, Lan T, Zhang J, Chen Z, Yang W, Lin X. Further fine mapping and candidate gene prediction for a new restoring fertility gene Rf(fa) in rice. Czech J. Genet. Plant Breed. 2023;59(1):43-53. doi: 10.17221/49/2022-CJGPB.
Download citation

Supplementary files:

Download fileLi ESM.pdf

File size: 922.06 kB

References

  1. Chiu X.L., Wang H.F., Wang N.Y., Li Y., Liang K.J. (2013): Genetic effects analysis of male sterile cytoplasm and nucleo-cytoplasmic interactions in CMS-FA hybrid rice. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 42: 113-118. (in Chinese)
  2. Cui X., Wise R.P., Schnable P.S. (1996): The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 272: 1334-1336. Go to original source... Go to PubMed...
  3. Ding J., Qing L., Yidan O., Hailing M., Pingbo Z., Jialing Y., Caiguo X., Xianghua L., Jinghua X., Qifa Z. (2012): A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. The Proceedings of National Academy of Sciences, 109: 2654-2659. Go to original source... Go to PubMed...
  4. Eitabashi E., Iwata N., Fujii S., Kazama T., Toriyama K. (2011): The fertility restorer gene, Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant Journal, 65: 359-367. Go to original source... Go to PubMed...
  5. Fujii S., Toriyama K. (2009): Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. The Proceedings of the National Academy of Sciences, 106: 9513-9158. Go to original source... Go to PubMed...
  6. Guo G.Q., Song X.W., Song P.Y., Yin J.Y., He Q., Yuang D.Y., Deng F.H., Yuan L.P. (2016): Morphological characterization and fine mapping of zebra leaf mutant zebra1349 in rice (Oryza sativa L.). Acta Agronomica Sinica, 42: 957-965. (in Chinese) Go to original source...
  7. Hua J., Wang K., Huang W.C., Liu G., Gao Y., Wang J.M., Huang Q., Jia Y.X., Qin X.J., Lei W., Zhu R.S., Li S.Q., Yang D.C., Zhu Y.G. (2012): The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell, 24: 109-122. Go to original source... Go to PubMed...
  8. Huang W.C., Hu J., Yu C.C., Huang Q., Wan L., Wang L.L., Qin X.J., Ji Y.X., Zhu R.S., Li S.Q., Zhu Y.G. (2012): Two non-allelic nuclear genes restore fertility in a gametophytic pattern and enhance abiotic stress tolerance in the hybrid rice plant. Theoretical and Applied Genetics, 124: 799-807. Go to original source... Go to PubMed...
  9. Huang W.C., Yu C.C., Hua J., Wang L.L., Dan Z.W., Zhou W., He C.L., Zeng Y.F., Yao G. X., Qi J.Z., Zhang Z.H., Zhu R.S., Chen X.F., Zhu Y.G. (2015): Pentatricopeptiderepeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. The Proceedings of the National Academy of Sciences, 112: 14984-14989. Go to original source... Go to PubMed...
  10. Jiang H.C., Lu Q., Qiu S.Q., Yu H.H., Wang Z.J., Yu Z.C., Lu Y.R., Wang L., Xia F., Wu Y.Y., Li F., Zhang Q.L., Liu G., Song D.D., Ma C.L., Ding Q., Zhang X.B., Zhang L., Zhang X.T., Li X., Zhang J.W., Xiao J.H., Li X.H., Wang N.Y., Ouyang Y.D., Zhou F.S., Zhang Q.F. (2022): Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice. The Proceedings of the National Academy of Sciences, 119: e2208759119. Go to original source... Go to PubMed...
  11. Keisuke I., Tomohiko K., Kinya T. (2016): A gene encoding pentatricopeptide repeat protein partially restores fertility in RT98-Type cytoplasmic male-sterile rice. Plant and Cell Physiology, 57: 2187-2193. Go to original source... Go to PubMed...
  12. Li Y., Zhang M., Yang X.F., Lin C.F., Duan Y.L., Wang N.Y. (2016): Fine mapping of a fertility restoring gene for a new CMS hybrid rice system. Molecular Breeding, 36:141. Go to original source...
  13. Liu X.Q., Xu X., Tan Y.P., Li S.Q., Hu J., Huang J.Y., Yang D.C., Li Y.S., Zhu Y.G. (2004): Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.). Molecular Genetics and Genomics, 271: 586-594. Go to original source... Go to PubMed...
  14. Luo D.P., Xu H., Liu Z.L., Guo J.X., Li H.Y., Chen L.T., Fang C., Zhang Q.Y., Bai M., Yao N., Wu H., Ji C.H., Zheng H.Q., Chen Y.L., Ye S., Li X.Y., Zhao X.C., Li R.Q., Liu Y.G. (2013): A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nature Genetics, 45: 573-578. Go to original source... Go to PubMed...
  15. Murray M.G., Thompson W.F. (1980): Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4325. Go to original source... Go to PubMed...
  16. Ponnuswamy R., Singh A.K., Raman M.S., Subbarao L.V., Neeraja C.N. (2020): Conversion of partial restorer Swarna into restorer by transferring fertility restorer Rf gene(s) through marker assisted back cross breeding (MABB) in rice. Scientific Reports, 10: 1101. Go to original source... Go to PubMed...
  17. Shinya F., Tomohiko K., Yukihiro I., Soichi K., Kinya O. (2014): A candidate factor that interacts with RF2, a restorer of fertility of lead rice-type cytoplasmic male sterility in rice. Rice, 7: 21. Go to original source... Go to PubMed...
  18. Sota F., Kinya T. (2009): Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. The Proceedings of the National Academy of Sciences, 106: 9513-9518. Go to original source... Go to PubMed...
  19. Tan Y.N., Sun X.W., Yuan D.Y., Sun Z.Z., Yu D., He Q., Duan M.J., Deng H.F., Yuan L.P. (2015): Identification and fine mapping of green-revertible chlorina gene grc2 in rice (Oryza sativa L.). Acta Agronomica Sinica, 41: 831-837. (in Chinese) Go to original source...
  20. Tautzs D. (1989): Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17: 6463-6471. Go to original source... Go to PubMed...
  21. Tomohiko K., Kinya T. (2014): A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein. Rice, 7: 28. Go to original source... Go to PubMed...
  22. Virmaniss S. (1988): Current status of analysis and symbols for male-sterile cytoplasms and fertility-restoring genes. Rice Genetic Newsletter, 59: 15.
  23. Wang H.F., Wang N.Y., Li Y., Liang K.J., Chiu X.L., Zhou W.Y. (2010): Genetic effects and heterosis analysis on yieldrelated traits of CMS-FA hybrid rice. Scientia Agricultura Sinica, 43: 230-239. (in Chinese)
  24. Wang N.Y., Liang K.J., Li Y., Wang Y., Wang H.F., Chiu X.L. (2008a): Inheritance of restorer gene for CMS-FA hybrid rice. Acta Agronomica Sinica, 34: 1929-1937. (in Chinese) Go to original source...
  25. Wang N.Y., Liang K.J., Li Y., Wang Y., Wang H.F., Chiu X.L., Wei X.Y., Zhang Y.Y., Ke B., Zhao J.Y. (2008b): Screening parent resources of hybrid rice in new cytoplasm male sterile system (CMS-FA). Acta Agronomica Sinica, 34: 1549-556. (in Chinese) Go to original source...
  26. Wang Z.H., Zou Y.J., Li X.Y., Zhan Q.Y., Chen L.T., Wu H., Su D.H., Chen Y.L., Guo J.X., Luo D., LongY.M., Zhong Y., Liu Y.H. (2006): Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 18: 676-687. Go to original source... Go to PubMed...
  27. Xie H.W., Peng X.J., Qian M.J., Cai Y.C., Ding X., Chen Q.S., Cai Q.Y., Zhu Y.L., Yang N.A., Cai Y.H. (2018): The chimeric mitochondrial gene orf182 causes non-pollentype abortion in Dongxiang cytoplasmic male-sterile rice. Plant Journal, 95: 715-726. Go to original source... Go to PubMed...
  28. Yuan L.P. (1966): The cytoplasmic male sterility in rice. China Science Bulletin, 17: 185-188. (in Chinese)
  29. Zhang G., Lu Y., Bharaj T.S., Virmani S.S., Huang N. (1997): Mapping of the Rf-3 nuclear fertility- restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theoretical and Applied Genetics, 94: 27-33. Go to original source... Go to PubMed...
  30. Zhang H.G., Li X.X., Xu Z.P., Wan Z.H., Wang R.X., Zhao X.Q., Tu G.L., Liang G.H., Gu M.H., Tang S.Z. (2022). Precise genetic mapping of Rf18(t), a new fertility restorer gene from 'Nipponbare' for wild abortive cytoplasmic male sterility in rice (Oryza sativa L.). Theoretical and Applied Genetics, 135: 2687-2698. Go to original source... Go to PubMed...
  31. Zhang J.W., Chen L.L., Xing F., David A., Kudrna, Yao W., Dario Copetti, Mu T., Li W.M., Song J.M., Xie W.B., Lee S.H., Jayson Talag L., Shao An Y., Zhang C.L., Ouyang Y.D., Sun S., Jiao W.B., Lv F., Bogu Du, M.Z Luo, Maldonado C.E., Goicoechea J.L., Xiong L.Z., Wu C.Y., Xing Y.Z., Zhou D.X., Yu S.B., Zhao Y., Wang G.W., Yeisoo Yub, Luo Y.J., Zhou Z.W., Padilla Hurtado B.E., Danowitz A., Wing R., Zhang Q.F.(2016): Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. The Proceedings of the National Academy of Sciences, 113: E5163-E5171. Go to original source... Go to PubMed...
  32. Zhang Q.U., Liu Y.G., Zhang G.Q., Mei M.T. (2002): Molecular mapping of the fertility restorer gene Rf-4 for WA cytoplasmic male sterility in rice. Acta Genetica Sinica, 29: 1001-1004. (in Chinese)
  33. Zhang Z., Deng Y., Tan J., Hu S., Yu J., Xue Q. (2007): A genomewide microsatellite polymorphism database for the indica and japonica rice. DNA Research, 14: 37-45. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.