Czech J. Genet. Plant Breed., 2020, 56(2):52-61 | DOI: 10.17221/35/2019-CJGPB

The development and validation of new DNA markers linked to the thousand-grain weight QTL in bread wheat (Triticum aestivum L.)Original Paper

Cong Cong Yang1,2, Jian Ma*,1,2, Cong Li1,2, Min Sun1,2, Ya Ya Zou1,2, Ting Li1,2, Yang Mu1,2, Hua Ping Tang1,2, Xiu Jin Lan*,1,2
1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
2 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, P.R. China

Thousand-grain weight (TGW) is an important trait affecting wheat production. We previously identified a major quantitative trait loci (QTL) controlling the TGW on the 2D chromosome of wheat using a recombinant inbred line (RIL) population constructed by the cross between Tibetan semi-wild wheat Q1028 (Q1028) and Zhengmai 9023 (ZM9023). The positive allele at this QTL is from ZM9023. To further characterise this QTL, here, we try to develop and validate the high-resolution melting (HRM) and sequence-characterised amplified region (SCAR) markers. One HRM marker (0C98-411) and two SCAR markers (E301-700 and B0BB-10470) were developed and integrated into the genetic map. All of these three markers were validated in three populations with different genetic backgrounds. 0C98-411 is the most closely linked marker that could trace QTgw.sau-2D in molecular marker assisted breeding.

Keywords: high-resolution melting marker; marker development; QTgw.sau-2D; sequence-characterised amplified region marker

Published: June 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yang CC, Ma J, Li C, Sun M, Zou YY, Li T, et al.. The development and validation of new DNA markers linked to the thousand-grain weight QTL in bread wheat (Triticum aestivum L.). Czech J. Genet. Plant Breed. 2020;56(2):52-61. doi: 10.17221/35/2019-CJGPB.
Download citation

Supplementary files:

Download file35-2019 Yang_ESM.pdf

File size: 475.6 kB

References

  1. Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannag M., Wiebe K., Jordan K.W., Golan G., Deek J., Ben-Zvi B., Ben-Zvi G., Himmelbach A., MacLachlan R.P., Sharpe A.G., Fritz A., Ben-David R., Budak H., Fahima T., Koro A., Faris J.D., Hernandez A., Mike M.A., Levy A.A., Steffenson B., Maccaferri M., Tuberosa R., Cattivelli L., Faccioli P., Ceriotti A., Kashkush K., Pourkheirandish M., Komatsuda T., Eilam T., Sela H., Sharon A., Ohad N., Chamovitz D.A., Mayer K.F.X., Stein N., Ronen G., Peleg Z., Pozniak C.J., Akhunov E.D., Distelfeld A. (2017): Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357: 93-97. Go to original source... Go to PubMed...
  2. Badaeva E.D., Dedkova O.S., Gay G., Pukhalskyi V.A., Zelenin A.V., Bernard S., Bernard M. (2007): Chromosomal rearrangements in wheat: their types and distribution. Genome, 50: 907-926. Go to original source... Go to PubMed...
  3. Botticella E., Sestili F., Hernandez-Lopez A., Phillips A., Lafiandra D. (2011): High resolution melting analysis for the detection of EMS induced mutations in wheat Sbella genes. BMC Plant Biology, 11: 156. Go to original source... Go to PubMed...
  4. Chen X., Yang D., Su M., Cheng H., Xing H., Chai S., Li W. (2014): Genetical characteristic of stay-green of flag leaf after flowering in Recombinant Inbred Lines (RILs) of wheat and its correlation analysis with grain weight under drought stress. Agricultural Research in the Arid Areas, 32: 57. (in Chinese)
  5. Dufresne S.D., Belloni D.R., Wells W.A., Tsongalis G.J. (2006): BRCA1 and BRCA2 mutation screening using SmartCycler II high-resolution melt curve analysis. Archives of Pathology and Laboratory Medicine, 130: 185-187. Go to original source... Go to PubMed...
  6. Farrar J.S., Wittwer C.T. (2017): High-resolution melting curve analysis for molecular diagnostics. Chapter 6. In: Patrinos G.P. (ed.): Molecular Diagnostics. 3rd Ed., Academic Press: 79-102. Go to original source...
  7. Herrmann M.G., Durtschi J.D., Bromley L.K., Wittwer C.T., Voelkerding K.V. (2006): Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clinical Chemistry, 52: 494-503. Go to original source... Go to PubMed...
  8. Huang X., Zhu M., Zhuang L., Zhang S., Wang J., Chen X., Wang D., Chen J., Bao Y., Guo G., Zhang J., Feng Y., Chu C., Du P., Qi Z., Wang H., Chen P. (2018): Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics, 131: 1967-1986. Go to original source... Go to PubMed...
  9. IWGSC (The International Wheat Genome Sequencing Consortium) (2014): A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345: 1251788.
  10. Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., International Wheat Genome Sequencing Consortium, Yang H., Liu X., He Z., Mao L., Wang J. (2013): Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 469: 91. Go to original source... Go to PubMed...
  11. Ling H., Zhao S., Liu D., Wang J., Sun H., Zhang C., Fan H., Li D., Dong L., Tao Y., Gao C., Wu H., Li Y., Cui Y., Guo X., Zheng S., Wang B., Yu K., Liang Q., Yang W., Lou X., Chen J., Feng M., Jian J., Zhang X., Luo G., Jiang Y., Liu J., Wang Z., Sha Y., Zhang B., Wu H., Tang D., Shen Q., Xue P., Zou S., Wang X., LiuX., Wang F., Yang Y., An X., Dong Z., Zhang K., Zhang X., Luo M., Dvorak J., Tong Y., Wang J., Yang H., Li Z., Wang D., Zhang A., Wang J. (2013): Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496: 87. Go to original source... Go to PubMed...
  12. Lipsky R.H., Mazzanti C.M., Rudolph J.G., Xu K., Vyas G., Bozak D., Radel M.Q., Goldman D. (2001): DNA melting analysis for detection of single nucleotide polymorphisms. Clinical Chemistry, 47: 635-644. Go to original source...
  13. Luo M.C., Gu Y.Q., Puiu D., Wang H., Twardziok S.O., Deal K.R., Huo N., Zhu T., Wang L., Wang Y., McGuire P.E., Liu S., Long H., Ramasamy R.K., Rodriguez J.C., Van S.L., Yuan L., Wang Z., Xia Z., Xiao L., Anderson O.D., Ouyang S., Liang Y., Zimin A.V., Pertea G., Qi P., Bennetzen J.L., Dai X., Dawson M.W., Müller H.G., Kugler K., Rivarola-Duarte L., Spannagl M., Mayer K.F.X., Lu F.H., Bevan M.W., Leroy P., Li P., You F.M., Sun Q., Liu Z., Lyons E., Wicker T., Salzberg S.L., Devos K.M., Dvořák J. (2017): Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551: 498. Go to original source... Go to PubMed...
  14. Luo W., Ma J., Zhou X.H., Sun M., Kong X.C., Wei Y.M., Jiang Y.F., Qi P.F., Jiang Q.T., Liu Y.X., Peng Y.Y., Chen G.Y., Zheng Y.L., Liu C.J., Lan X.J. (2016): Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semi wild wheat (Triticum aestivum ssp. tibetanum). Crop Science, 56: 2410-2420. Go to original source...
  15. Ma J., Stiller J., Wei Y.M., Zheng Y.L., Devos K.M., Doležel J., Liu C.J. (2014): Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype "Chinese Spring" revealed from chromosome shotgun sequence data. Genome Biology and Evolution, 6: 3039-3048. Go to original source... Go to PubMed...
  16. Ma J., Stiller J., Zheng Z., Liu Y.X., Wei Y.M., Zheng Y.L., Liu C. (2015a): A high-throughput pipeline for detecting locus-specific polymorphism in hexaploid wheat (Triticum aestivum L.). Plant Methods, 11: 39. Go to original source... Go to PubMed...
  17. Ma J., Stiller J., Zheng Z., Wei Y.M., Zheng Y.L., Yan G.J., Doležel J., Liu Ch.J. (2015b): Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring' revealed by gene locations on homeologous chromosomes. BMC Evolutionary Biology, 15: 37. Go to original source... Go to PubMed...
  18. Ma J., Sun M., Yang C.C., Qin N.N., Zhang H., Ding P.Y., Mu Y., Tang H.P., Lan X.J. (2018): Development and validation of markers for spike density QTL, Qsd. sau-7A from Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum). Indian Journal of Genetics and Plant Breeding, 78: 11-18. Go to original source...
  19. Ma J., Qin N.N., Cai B., Chen G.Y., Ding P., Zhang H., Yang C.C., Huang L., Mu Y., Tang H.P., Liu Y.X., Wang J.R., Qi P.F., Jiang Q.T., Zheng Y.L., Liu C.J., Lan X.J., Wei Y.M. (2019): Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 132: 1363-1373. Go to original source... Go to PubMed...
  20. Murray M.G., Thompson W.F. (1980): Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4326. Go to original source... Go to PubMed...
  21. Paterson A.H., Lander E.S., Hewitt J.D., Peterson S., Lincoln S.E., Tanksley S.D. (1988): Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335: 721. Go to original source... Go to PubMed...
  22. Pirulli D., Boniotto M., Puzzer D., Spanò A., Amoroso A., Crovella S. (2000): Flexibility of melting temperature assay for rapid detection of insertions, deletions, and single-point mutations of the AGXT gene responsible for type 1 primary hyperoxaluria. Clinical Chemistry, 46: 1842-1844. Go to original source...
  23. Röder M.S., Huang X.Q., Börner A. (2008): Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional and Integrative Genomics, 8: 79-86. Go to original source... Go to PubMed...
  24. Saintenac C., Jiang D., Wang S., Akhunov E. (2013): Sequence-based mapping of the polyploid wheat genome. G3: Genes, Genomes, Genetics, 3: 1105-1114. Go to original source... Go to PubMed...
  25. Song X.J. Huang W., Shi M., Zhu M.Zh., Lin H.X. (2007): A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39: 623. Go to original source... Go to PubMed...
  26. Tahmasebi S., Heidari B., Pakniyat H., McIntyre L. (2017): Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 60: 26-45. Go to original source... Go to PubMed...
  27. Wang S., Li S., Liu Q., Wu K., Zhang J.Q., Wang Sh.S., Wang Y., Chen X.B., Zhang Y., Gao C.X., Wang F., Huang H.X., Fu X D. (2015a): The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 47: 949. Go to original source... Go to PubMed...
  28. Wang Y., Xiong G., Hu J., Jiang L., Yu H., Xu J., Fang Y., Zeng L., Xu E., Xu J., Ye W., Meng X., Liu R., Chen H., Jing Y., Wang Y., Zhu X., Li J., Qian Q. (2015b): Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 47: 944-948. Go to original source... Go to PubMed...
  29. Wittwer C.T., Reed G.H., Gundry C.N.,Vandersteen G.J., Pryor R.J. (2003): High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry, 49:853-860. Go to original source... Go to PubMed...
  30. Wu Q.H., Chen Y.X., Zhou S.H., Fu L., Chen J.J., Xiao Y., Zhang D., Ouyang S.H., Zhao X.J., Cui Y., Zhang D.Y., Liang Y., Wang Z.Z., Xie J.Z., Qin J.X., Wang G.X., Li D.L., Huang Y.L., Yu M.H., Lu P., Wang L.L., Wang L., Wang H., Dang C., Li J., Zhang Y., Peng H.R., Yuan C.G., You M.S., Sun Q.X., Wang J.R., Wang L.X., Luo M.C., Han J., Liu Z.Y. (2015): High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 × Beinong6. Plos One, 10: e0118144. Go to original source... Go to PubMed...
  31. Xu Q., Chen W., Xu Z. (2015): Relationship between grain yield and quality in rice germplasms grown across different growing areas. Breeding Science, 65: 226-232. Go to original source... Go to PubMed...
  32. Yu M., Mao S.L., Hou D.B., Chen G.Y., Pu Z.-E., Li W., Lan X.-J., Jiang Q., Liu Y.X., Deng M., Wei Y.M. (2018): Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breeding, 137: 35-49. Go to original source...
  33. Zhang X.Y., Gao Y.N. (2004): To design PCR primers with Oligo 6 and Primer Premier 5. Bioinformatics, 4: 15. (in Chinese)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.