Czech J. Genet. Plant Breed., 2019, 55(3):120-127 | DOI: 10.17221/61/2018-CJGPB

Effect of different factors on regeneration and transformation efficiency of tomato (Lycopersicum esculentum) hybridsOriginal Paper

Evangelia Stavridou1,2, Nikoleta A. Τzioutziou1,3, Panagiotis Madesis2, Nikolaos E. Labrou4, Irini Nianiou-Obeidat1,*
1 Department of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Thessaloniki, Greece
2 Institute of Applied Biosciences, Thessaloniki, Greece
3 Division of Plant Sciences, College of Life Sciences, University of Dundee, Invergowrie, Dundee, UK
4 Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece

The current study aimed to produce rootstock material through micropropagation by developing efficient regeneration and Agrobacterium-mediated transformation protocols for three high quality commercial tomato hybrids (Felina, Siena and Don Jose) to overexpress the GmGSTU4 gene from Glycine max L. previously shown to enhance antioxidant activity. We investigated the plant growth regulators zeatin (Z) and 3-idoleacetic acid (IAA) to determine their best combination for an efficient regeneration protocol for each hybrid. The highest regeneration efficiency was observed in Felina (94.4%) with 1.0 mg/l Z and 0.1 mg/l IAA. In contrast, Don Jose (92.5%) and Siena (83.3%) performed better with 0.5 mg/l Z and 0.1 mg/l IAA. The three hybrids did not differ in micropropagation index, however, Felina showed the highest number of in vitro rooted and in vivo acclimatized plants. Factors such as the age of explant, days in pre- and co-culture and the concentrations of acetosyringone and thiamine on Agrobacterium-mediated genetic transformation were assessed. The transformation indices were 37.04% for the Felina, 13.8% for Siena and 8.33% for Don Jose. We conclude that targeted genotype-specific regeneration protocols will provide an efficient and cost effective genetic transformation system for rootstock production and further incorporation into micropropagation and transgrafting systems.

Keywords: Agrobacterium-mediated transformation; glutathione-S-transferases; growth regulators; micropropagation; shoot regeneration, Solanum lycopersicum

Published: September 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Stavridou E, Τzioutziou NA, Madesis P, Labrou NE, Nianiou-Obeidat I. Effect of different factors on regeneration and transformation efficiency of tomato (Lycopersicum esculentum) hybrids. Czech J. Genet. Plant Breed. 2019;55(3):120-127. doi: 10.17221/61/2018-CJGPB.
Download citation

Supplementary files:

Download file61-2018 Stavridou_ESM.pdf

File size: 393.72 kB

References

  1. Ahsan N., Lee S.H., Lee D.G., Anisuzzaman M., Alam M.F., Yoon H.S., Choi M.S., Yang J.K., Lee B.H. (2007): The effects of wounding type, preculture, infection method and cocultivation temperature on the Agrobacteriummediated gene transfer in tomatoes. Annals of Applied Biology, 151: 363-372. Go to original source...
  2. Ajenifujah-Solebo S., Isu N., Olorode O., Ingelbrecht I., Abiade O. (2012): Tissue culture regeneration of three Nigerian cultivars of tomatoes. African Journal of Plant Science, 6: 370-375. Go to original source...
  3. Albacete A., Martínez-Andújar C., Martínez-Pérez A., Thompson A.J., Dodd I.C., Pérez-Alfocea F. (2015): Unravelling rootstock × scion interactions to improve food security. Journal of Experimental Botany, 66: 2211-2226. Go to original source... Go to PubMed...
  4. Benekos K., Kissoudis C., Nianiou-Obeidat I., Labrou N., Madesis P., Kalamaki M., Makris A., Tsaftaris A. (2010): Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. Journal of Biotechnology, 150: 195-201. Go to original source... Go to PubMed...
  5. Butaye K.M.J., Cammue B.P.A., Delauré S.L., De Bolle M.F.C. (2005): Approaches to minimize variation of transgene expression in plants. Molecular Breeding, 16: 79-91. Go to original source...
  6. Cardoza V., Stewart C.N. (2003): Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Reports, 21: 599-604. Go to original source... Go to PubMed...
  7. Choi J.Y., Seo Y.S., Kim S.J., Kim W.T., Shin J.S. (2011): Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Reports, 30: 867-877. Go to original source... Go to PubMed...
  8. Cortina C., Culiáñez-Macià F. (2004): Tomato transformation and transgenic plant production. Plant Cell, Tissue and Organ Culture, 76: 269-275. Go to original source...
  9. Cruz-Mendivil A., Rivera-López J., German-Baez L.J., Lopez-Meyer M., Hernandez-Verdugo S., Lopez-Valenzuela J.A., Reyes-Moreno C., Valdez-Ortiz A., Valdez-Ortiz A. (2011): A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. Micro-Tom from leaf explants. HortScience, 46: 1655-1660. Go to original source...
  10. Cummins I., Dixon D.P., Freitag-Pohl S., Skipsey M., Edwards R. (2011): Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews, 43: 266-280. Go to original source... Go to PubMed...
  11. Flores F.B., Sanchez-Bel P., Estañ M.T., Martinez-Rodriguez M.M., Moyano E., Morales B., Campos J.F., Garcia-Abellán J.O., Egea M.I., Fernández-Garcia N., Romojaro F., Bolarín M.C. (2010): The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125: 211-217. Go to original source...
  12. Francis K.E., Spiker S. (2005): Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41: 464-477. Go to original source... Go to PubMed...
  13. Fuentes A.D., Ramos P.L., Sánchez Y., Callard D., Ferreira A., Tiel K., Cobas K., Rodríguez R., Borroto C., Doreste V., Pujol M. (2008): A transformation procedure for recalcitrant tomato by addressing transgenic plant-recovery limiting factors. Biotechnology Journal, 3: 1088-1093. Go to original source... Go to PubMed...
  14. Gao N., Shen W., Cao Y., Su Y., Shi W. (2009): Influence of bacterial density during preculture on Agrobacteriummediated transformation of tomato. Plant Cell, Tissue and Organ Culture, 98: 321-330. Go to original source...
  15. Girhepuje P.V., Shinde G.B. (2011): Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f.sp. lycopersici. Plant Cell, Tissue and Organ Culture, 105: 243-251. Go to original source...
  16. Goldschmidt E.E. (2014): Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5: 1-9. Go to original source... Go to PubMed...
  17. Grigoriadis I., Nianiou-Obeidat I., Tsaftaris A.S. (2005): Shoot regeneration and micrografting of micropropagated hybrid tomatoes. The Journal of Horticultural Science and Biotechnology, 80: 183-186. Go to original source...
  18. Guo M., Zhang Y.L., Meng Z.J., Jiang J. (2012): Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genetics and Molecular Research, 11: 661-671. Go to original source... Go to PubMed...
  19. Kissoudis C., Kalloniati C., Flemetakis E., Madesis P., Labrou N.E., Tsaftaris A., Nianiou-Obeidat I. (2015a): Maintenance of metabolic homeostasis and induction of cytoprotectants and secondary metabolites in alachlor-treated GmGSTU4-overexpressing tobacco plants, as resolved by metabolomics. Plant Biotechnology Reports, 9: 287-296. Go to original source...
  20. Kissoudis C., Kalloniati C., Flemetakis E., Madesis P., Labrou N.E., Tsaftaris A., Nianiou-Obeidat I. (2015b): Stressinducible GmGSTU4 shapes transgenic tobacco plants metabolome towards increased salinity tolerance. Acta Physiologiae Plantarum, 37: 1-11. Go to original source...
  21. Lee J.M., Kubota C., Tsao S.J., Bie Z., Echevarria P.H., Morra L., Oda M. (2010): Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127: 93-105. Go to original source...
  22. Lin T., Zhu G., Zhang J., Xu X., Yu, Q., Zheng Z., Zhang Z., Lun Y., Li S., Wang X., Huang Z., Li J., Zhang C., Wang T., Zhang Y., Wang A., Zhang Y., Lin K., Li C., Xiong G., Xue Y., Mazzucato A., Causse M., Fei Z., Giovannoni J.J., Chetelat R.T., Zamir D., Städler T., Li J., Ye Z., Du Y., Huang S. (2014): Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46: 1220-1226. Go to original source... Go to PubMed...
  23. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25: 402-408. Go to original source... Go to PubMed...
  24. Ma J., Liu T., Qiu D. (2015): Optimization of Agrobacteriummediated transformation conditions for tomato (Solanum lycopersicum L.). Plant OMICS, 8: 529-536.
  25. Marrs K.A. (1996): The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 127-158. Go to original source... Go to PubMed...
  26. Murashige T., Skoog F. (1962): A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Go to original source...
  27. Nianiou-Obeidat I., Madesis P., Kissoudis C., Voulgari G., Chronopoulou E., Tsaftaris A., Labrou N.E. (2017): Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports, 36: 791-805. Go to original source... Go to PubMed...
  28. Patil R.S., Dave M.R., Power J.B., Cocking E.C. (2002): Effective protocol for Agrobacterium-mediated leaf disc transformation in tomato (Lycopersicon esculetum Mill.). Indian Journal of Biotechnology, 1: 339-343.
  29. Qiu D., Diretto G., Tavarza R., Giuliano G. (2007): Improved protocol for Agrobacterium mediated transformation of tomato and production of transgenic plants containing carotenoid biosynthetic gene CsZCD. Scientia Horticulturae, 112: 172-175. Go to original source...
  30. Rai G.K., Rai N.P., Kumar S., Yadav A., Rathaur S., Singh M. (2012): Effects of explant age, germination medium, preculture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular and Developmental Biology - Plant, 48: 565-578. Go to original source...
  31. Raj S.K., Singh R., Pandey S.K., Singh B.P. (2005): Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection. Current Science, 88: 1674-1679.
  32. Roxas V.P., Lodhi S.A., Garrett D.K., Mahan J.R., Allen R.D. (2000): Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant & Cell Physiology, 41: 1229-1234. Go to original source... Go to PubMed...
  33. Schwarz D., Rouphael Y., Colla G., Venema J.H. (2010): Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127: 162-171. Go to original source...
  34. Sun H., Uchii S., Watanable S., Ezura H. (2006): A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant and Cell Physiology, 47: 426-431. Go to original source... Go to PubMed...
  35. Velcheva M., Faltin Z., Flaishman M., Eshdat Y., Perl A. (2005): A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.). Plant Science, 168: 121-130. Go to original source...
  36. Vidya C.S.S., Manoharan M., Kumar C.T.R., Savithri H.S., Sita G.L. (2000): Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum var. Pusa ruby) with coat-protein gene of Physalis mottle tymovirus. Journal of Plant Physiology, 156: 106-110. Go to original source...
  37. Wu Y., Chen Y., Liang X., Wang X. (2006): An experimental assessment of the factors influencing Agrobacteriummediated transformation in tomato. Russian Journal of Plant Physiology, 53: 252-256. Go to original source...
  38. Yasmeen A. (2009): An improved protocol for the regeneration and transformation of tomato (cv Rio Grande). Acta Physiologiae Plantarum, 31: 1271-1277. Go to original source...
  39. Zhang H., He X., Zhu J.-K. (2013): RNA-directed DNA methylation in plants. RNA Biology, 10: 1593-1596. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.