Czech J. Genet. Plant Breed., 2019, 55(3):93-100 | DOI: 10.17221/197/2017-CJGPB

Breeding of Indica glutinous cytoplasmic male sterile line WX209A via CRISPR/Cas9 mediated genomic editingOriginal Paper

Xin Wang#,1, Yue Han#,1, Xuan Feng1, Yun-Zhen Li1, Bao-Xiang Qin1,2, Ji-Jing Luo2,3, Zheng Wei1, Yong-Fu Qiu1,2, Fang Liu*,1,2, Rong-Bai Li*,1,2
1 Agricultural College, Guangxi University, Nanning, Guangxi, P.R.China
2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, Guangxi, P.R.China
3 College of Life Science, Guangxi University, Nanning, Guangxi, P.R.China

Glutinous cytoplasmic male sterile (CMS) line is necessary to select hybrid glutinous rice combination with high yield and quality. To develop glutinous CMS with low amylose content, in this study, we firstly knocked out the granule-bound starch synthase OsWaxy in 209B using CRISPR/Cas9 mediated genome editing technology and successfully obtained a glutinous maintainer line WX209B. Comparing with maintainer line 209B, WX209B showed decreased amylose contents and similar agronomic characters. And then, through one generation of hybridization and two generations of backcrossing with WX209B as the male parent and 209A as the female parent, the glutinous CMS line WX209A was successfully achieved. Our study provides a strategy to efficiently breed for the glutinous cytoplasmic male sterile line by combining CRISPR/Cas9-mediated gene editing technology with conventional backcross breeding method in a short period, which prepares the ground for further breeding of hybrid glutinous rice variety.

Keywords: glutinous rice; CRISPR; OsWaxy; rice breeding

Published: September 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang X, Han Y, Feng X, Li Y, Qin B, Luo J, et al.. Breeding of Indica glutinous cytoplasmic male sterile line WX209A via CRISPR/Cas9 mediated genomic editing. Czech J. Genet. Plant Breed. 2019;55(3):93-100. doi: 10.17221/197/2017-CJGPB.
Download citation

References

  1. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. (2013): Multiplex genome engineering using CRISPR/ Cas systems. Science, 339: 819-823. Go to original source... Go to PubMed...
  2. DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. (2013): Genome engineering in Saccharomyces cerevisiae using CRISPR/Cas systems. Nucleic Acids Research, 41: 4336-4343. Go to original source... Go to PubMed...
  3. Feng Z., Zhang B., Ding W., Liu X., Yang D.L, Wei P., Cao F., Zhu S., Zhang F., Mao Y., Zhu J.K. (2013): Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23: 1229-1232. Go to original source... Go to PubMed...
  4. Hiei Y., Ohta S., Komari T., Kumashiro T. (1994): Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal, 6: 271-282. Go to original source... Go to PubMed...
  5. Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Tsai S.Q., Sander J.D., Peterson R.T., Yeh J.R., Joung J.K. (2013): Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31: 227-229. Go to original source... Go to PubMed...
  6. Jiang W., Zhou H., Bi H., Fromm M., Yang B., Weeks D.P. (2013): Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41: e188. Go to original source... Go to PubMed...
  7. Li M., Li X.X., Zhou Z.J., Wu P.Z., Fang M.C., Pan X.P., Lin Q.P., Luo W.B., Wu G.L., Li H.Q. (2016): Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 7: 377. Go to original source... Go to PubMed...
  8. Liang Z., Zhang K., Chen K.L., Gao C.X. (2014): Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41: 63-68. Go to original source... Go to PubMed...
  9. Ma X.L., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., Xie Y., Shen R., Chen S., Wang Z., Chen Y., Guo J., Chen L., Zhao X., Dong Z., Liu Y.G. (2015): A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8: 1274-1284. Go to original source... Go to PubMed...
  10. Miao J., Guo D.S., Zhang J.Z., Huang Q.P., Qin G.J., Zhang X., Wan J.M., Gu H.Y., Qu L.J. (2013): Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23: 1233-1236. Go to original source... Go to PubMed...
  11. Perez C.M., Juliano B.O. (1978): Modification of the simplified amylose test for milled rice. Starch-Starke, 30: 424-426. Go to original source...
  12. Rowland L.J., Nguyen B. (1993): Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants. Biotechniques, 14: 734-736.
  13. Shan Q.W., Wang Y.P., Li J., Zhang Y., Chen K.L., Liang Z., Zhang K., Liu J.X., Jeff X.J.Z., Qiu J.L., Gao C.X. (2013): Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31: 686-688. Go to original source... Go to PubMed...
  14. Shan Q.W., Wang Y.P., Li J., Gao C.X. (2014): Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9: 2395-2410. Go to original source... Go to PubMed...
  15. Terada R., Nakajima M., Isshiki M., Okagaki R.J., Wessler S.R., Shimamoto K. (2000): Antisense Waxy genes with highly active promoters effectively suppress Waxy gene expression in transgenic rice. Plant Cell Physiology, 41: 881-888. Go to original source... Go to PubMed...
  16. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. (2013): One-step generation of mice carrying mutations in multiple genes by CRISPR/ Cas-mediated genome engineering. Cell, 153: 910-918. Go to original source... Go to PubMed...
  17. Wang T., Wei J.J., Sabatini D.M., Lander E.S. (2014a): Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343: 80-84. Go to original source... Go to PubMed...
  18. Wang Y.P., Cheng X., Shan Q.W., Zhang Y., L J.X., Gao C.X., Qiu J.L. (2014b): Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32: 947-951. Go to original source... Go to PubMed...
  19. Wang Z.Y., Wu Z.L., Xing Y.Y., Zheng F.G., Guo X.L., Zhang W.G., Hong M.M. (1990): Nucleotide sequence of rice waxy gene. Nucleic Acids Research, 18: 5898. Go to original source... Go to PubMed...
  20. Xu R.F., Li H., Qin R.Y., Li J., Qiu C.H., Yang Y.C., Ma H., Li L., Wei P.C., Yang J.B. (2015): Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports, 5: 11491. Go to original source... Go to PubMed...
  21. Zhang H., Zhang J.S., Wei P.L., Zhao B.T., Gou F., Feng Z.Y., Mao Y.F., Yang L., Zhang H., Xu N.F., Zhu J.K. (2014): The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12: 797-807. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.