Czech J. Genet. Plant Breed., 2018, 54(2):41-51 | DOI: 10.17221/46/2017-CJGPB
The progress of genetic improvement in alfalfa (Medicago sativa L.)Review
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
Alfalfa (Medicago sativa L.) is a perennial and outcrossing species, widely grown as a forage legume for hay, pasture and silage. The genetic engineering approaches involve the transfer of useful or novel gene(s) into alfalfa to improve desired traits. The recent development of genetic engineering is extensively applied to basic and applied research for alfalfa improvement, including improvement of herbicide resistance, reinforcement of the resistance to biotic and abiotic stresses, production of novel compounds, improved yield for industrial and/or pharmaceutical proteins and renewable energy sources. On the other hand, alfalfa forage needs to possess additional fermentable carbohydrates, proteins with a balanced amino acid profile that are gradually degraded in the rumen of domestic livestock, and zero anti-nutritional factors, which are the major concerns of recent interest in alfalfa. However, an advance of transgenic approach is contentious, requiring vigilant experimental methods and design to contest bio-safety challenges. More importantly, the technology of clustered regularly interspaced short palindromic repeats (CRISPR) is rapidly growing and might be a game player or changer in alfalfa. The present review can enable us to identify the proper direction, get familiar with new research methods and success of genetic engineering technology in alfalfa, to produce maximally improved cultivars.
Keywords: CRISPR, Cas9 technology; forage yield and quality; genetic engineering; stresses tolerance, transgenic alfalfa
Published: June 30, 2018 Show citation
References
- Aboagye I.A., Lynch J.P., Church J.S., Baah J., Beauchemin K.A. (2015): Digestibility and growth performance of sheep fed alfalfa hay treated with fibrolytic enzymes and a ferulic acid esterase producing bacterial additive. Animal Feed Science and Technology, 203: 53-66.
Go to original source...
- Agrawal R., Singh N.R., Ribeiro F.H., Delgass W.N. (2007): Sustainable fuel for the transportation sector. Proceeding of the National Academy of Sciences of the USA, 10412: 4828-4833.
Go to original source...
- Austin-Phillips S., Ziegelhoffer T. (2001): The Production of Value-added Proteins in Transgenic Alfalfa. Molecular Breeding of Forage Crops. Dordrecht, Kluwer: 285-301.
Go to original source...
- Avraham T., Badani H., Galili S., Amir R. (2004): Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine gamma-synthase gene. Plant Biotechnology Journal, 31: 71-79.
Go to original source...
Go to PubMed...
- Bagga S., Adams H.P., Rodriguez F.D., Kemp J.D., SenguptaGopalan C. (2004): Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein. Plant Cell, 99: 1683-1696.
Go to original source...
Go to PubMed...
- Bao A.K., Wang S.M., Wu G.Q., Xi J.J., Zhang J.L., Wang C.M. (2009): Overexpression of the Arabidopsis H + PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sciences, 1762: 232-240.
Go to original source...
- Bao A.K., Du B.Q., Touil L., Kang P., Wang Q.L., Wang S.M. (2016): Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnology Journal, 143: 964-975.
Go to original source...
Go to PubMed...
- Barry T.N., McNabb W.C. (1999): The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition, 814: 263-272.
Go to original source...
- Basak J., Nithin C. (2015): Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting. Frontier in Plant Sciences, 6: 1001.
Go to original source...
Go to PubMed...
- Baucher M., Bernard-Vailhe M.A., Chabbert B., Besle J.M., Opsomer C., Van Montagu M., Botterman J. (1999): Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Molecular Biology, 393: 437-447.
Go to original source...
Go to PubMed...
- Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. (2013): Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9: 39.
Go to original source...
Go to PubMed...
- Brito A.F., Broderick G.A. (2006): Effect of varying dietary ratios of alfalfa silage to corn silage on production and nitrogen utilization in lactating dairy cows. Journal of Dairy Sciences, 8910: 3924-3938.
Go to original source...
Go to PubMed...
- Brummer E.C. (2004): Applying genomics to alfalfa breeding programs. Crop Sciences, 446: 1904-1907.
Go to original source...
- Buxton D.R., Redfearn D.D. (1997): Plant limitations to fiber digestion and utilization. The Journal of Nutrition, 127 (5 Suppl): 814S-818S.
Go to original source...
Go to PubMed...
- Calderini O., Bovone T., Scotti C., Pupilli F., Piano E., Arcioni S. (2007): Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Reports, 265: 611-615.
Go to original source...
Go to PubMed...
- Castroluna A., Ruiz O.M., Quiroga A.M. (2014): Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Avances en Investigación Agropecuaria, 18: 39-50.
- Chandra A. (2009): Screening global Medicago germplasm for weevil (Hyperapostica Gyll.) tolerance and estimation of genetic variability using molecular markers. Euphytica, 1693: 363-374.
Go to original source...
- Cheeke P.R. (1996): Biological effects of feed and forage saponins and their impacts on animal production. Advances in Experimental Medical Biology, 405: 377-385.
Go to original source...
Go to PubMed...
- Chen F., Dixon R.A. (2007): Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 257: 759-761.
Go to original source...
Go to PubMed...
- Chen F., Srinivasa Reddy M.S., Temple S., Jackson L., Shadle G., Dixon R.A. (2006): Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant Journal, 481: 113-124.
Go to original source...
Go to PubMed...
- Cole D.J. (1985): Mode of action of glyphosate -a literature analysis. In: Grossbard E., Atkinson A. (eds): The Herbicide Glyphosate. Boston, Butterworth's & Co: 48-75.
- D'Aoust M.A., Lerouge P., Busse U., Bilodeau P. et al. (2004): Efficient and reliable production of pharmaceuticals in alfalfa. In: Fischer R., Schillberg S. (eds): Molecular Farming. Weinheim, Wiley-VCH: 1-12.
Go to original source...
- Duan Z., Zhang D., Zhang J., Di H., Wu F., Hu X., Wang Y. (2015): Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.). Frontier in Plant Sciences, 6: 1115.
Go to original source...
Go to PubMed...
- Gallego-Giraldo L., Jikumaru Y., Kamiya Y., Tang, Y., Dixon R.A. (2011): Selective lignin down regulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist, 1903: 627-639.
Go to original source...
Go to PubMed...
- Gallego-Giraldo L., Bhattarai K., Pislariu C.I., Nakashima J., Jikumaru Y., Kamiya Y., Dixon R.A. (2014): Lignin modification leads to increased nodule numbers in alfalfa. Plant Physiology, 1643:1139-1150.
Go to original source...
Go to PubMed...
- Guo D.J., Chen F., Inoue K., Blount J.W., Dixon R.A. (2001): Down regulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 131: 73-88.
Go to original source...
Go to PubMed...
- ISAAA (2016): Global Status of Commercialized Biotech/ GM Crops: 2016. ISAAA Brief No. 52, Ithaca, ISAAA.
- Jiang Q.Z., Zhang J.Y., Guo X.L., Monteros M.J., Wang Z.Y. (2009): Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. International Journal of Plant Sciences, 178: 969-978.
Go to original source...
- Jin T.C., Chang Q., Li W.F., Yin D.X., Li Z.J., Wang D.L., Liu L.X. (2010): Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue and Organ Culture, 1002: 219-227.
Go to original source...
- Kang P., Bao A.K., Kumar T., Pan Y.Q., Bao Z., Wan, F., Wang S.M. (2016): Assessment of stress tolerance, productivity, and forage quality in T1 transgenic alfalfa cooverexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Frontier in Plant Sciences, 7: 1598.
Go to original source...
Go to PubMed...
- Kim W.S., Krishnan H.B. (2003): Allelic variation and differential expression of methionine-rich delta-zeins in maize inbred lines B73 and W23a1. Planta, 2171: 66-74.
Go to original source...
Go to PubMed...
- Kineman B.D., Brummer E.C., Paiva N.L., Birt D.F. (2010): Resveratrol from transgenic alfalfa for prevention of aberrant crypt foci in mice. Nutrition and Cancer, 623: 351-361.
Go to original source...
Go to PubMed...
- Kumar S. (2011): Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics, 52: 111-124.
Go to original source...
Go to PubMed...
- Kumar S., Chandra A., Pandey K.C. (2008): Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. Journal of Environmental Biology, 295: 641-653.
- Kumar T., Uzma, Khan M.R., Abbas Z., Ali G.M. (2014): Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology, 56: 199-209.
Go to original source...
Go to PubMed...
- Laudadio V., Ceci E., Lastella N.M.B., Introna M., Tufarelli V. (2014): Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: Effects on productive traits and egg quality. Poultry Science, 937: 1868-1874.
Go to original source...
Go to PubMed...
- Li J.F., Zhang D., Sheen J. (2014): Cas9-based genome editing in Arabidopsis and tobacco. Methods in Enzymology, 546:459-472
Go to original source...
Go to PubMed...
- Li L., Yuan H. (2013): Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry and Biophysics, 5392: 102-109.
Go to original source...
Go to PubMed...
- Li X., Weng J.K., Chapple C. (2008): Improvement of biomass through lignin modification. Plant Journal, 544: 569-581.
Go to original source...
Go to PubMed...
- Liu C.Z., Yan L., Wei L.X., Zhang F., Qian X.J. (2008): Effects of cutting on the population dynamics of main insect pests on alfalfa. Ying Yong Sheng Tai Xue Bao, 193: 691-694.
- Mathison G.W., Soofi-Siawash R., Klita P.T., Okine E.K., Sedgwick G. (1999): Degradability of alfalfa saponins in the digestive tract of sheep and their rate of accumulation in rumen fluid. Canadian Journal of Animal Science, 793: 315-319.
Go to original source...
- McCaslin M., Temple S.J., Tofte J.E. (2002): Methods for maximizing expression of transgenic traits in autopolyploid plants. US Patent Appl US-2002-0042928-A1.
- McCoy T., Walker K. (1984): Alfalfa. In: Ammirato P.V., Evans D.A., Sharp W.R. Yamada Y. et al. (eds): Handbook of Plant Cell Culture. Vol 3. Crop Species, MacMillan Publishing Company: 171-192.
- McKersie B.D., Bowley S.R., Harjanto E., Leprince O. (1996): Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology, 1114: 1177-1181.
Go to original source...
Go to PubMed...
- McKersie B.D., Murnaghan J., Jones K.S., Bowley S.R. (2000): Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiology, 1224: 1427-1437.
Go to original source...
Go to PubMed...
- McMahon L.R., McAllister T.A., Berg B.P., Majak W., Acharya S.N., Popp J.D., Coulman B.E., Wang Y., Cheng K.J. (2000): A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Canadian Journal of Plant Sciences, 80: 469-485.
Go to original source...
- Mendis M.H., Power J.B., Davey M.R. (1991): Somatic hybrids of the forage legumes Medicago sativa L. and M. falcata L. Journal of Experimental Botany, 42245: 1565-1573.
Go to original source...
- Meng Y., Hou Y., Wang H., Ji R., Liu B., Wen J., Niu L., Lin H. (2017): Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36: 371-374.
Go to original source...
Go to PubMed...
- Michno J.M., Wang X., Liu J., Curtin S.J., Kono T.J., Stupar R.M. (2015): CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas 9 enzyme. GM Crops & Food, 6: 243-252.
Go to original source...
Go to PubMed...
- Mizukami Y., Katol M., Takamizo T., Kanbel M., Inamil S., Hattori K. (2006): Interspecific hybrids between Medicago sativa L. and annual Medicago containing alfalfa weevil resistance. Plant Cell, Tissue and Organ Culture, 84: 79-88.
Go to original source...
- Nair R.B., Bastress K.L., Ruegger M.O., Denault J.W. et al. (2004): The Arabidopsis REF1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell, 16: 544-554.
Go to original source...
Go to PubMed...
- Nicolia A., Ferradini N., Mollab G., Biagetti E., Pollegioni L., Veronesi F., Rosellini D. (2014): Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa. Journal of Biotechnology, 184: 201-208.
Go to original source...
Go to PubMed...
- Nutter F.W., Guan J., Gotlieb A.R., Rhodes L.H., Grau C.R., Sulc R.M. (2002): Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Disease, 863: 269-277.
Go to original source...
Go to PubMed...
- Pickering F.S., Reis P.J. (1993): Effects of abomasal supplements of methionine on wool growth of grazing sheep. Australian Journal of Experimental Agriculture, 331: 7-12.
Go to original source...
- Reddy M.S., Chen F., Shadle G., Jackson L., AljoeH., Dixon R.A. (2005): Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the USA, 102: 16573-16578.
Go to original source...
Go to PubMed...
- Ricroch A.E., Henard-Damave M.C. (2015): Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Critical Reviews in Biotechnology, 35: 1-16.
Go to original source...
Go to PubMed...
- Robins J.G., Bauchan G.R., Brummer E.C. (2007): Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Science, 471: 11-18.
Go to original source...
- Rule D.M., Nolting S.P., Prasifka P.L., Storer N.P., Hopkins B.W., Scherder E.F., Hendrix W.H. (2014): Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and Cry2Ab2 expressed in SmartStax corn hybrids against lepidopteran insect pests in the Northern United States. Journal of Economic Entomology, 1071: 403-409.
Go to original source...
Go to PubMed...
- Samac D.A., Jung H-J.G, Lamb J.F.S. (2006): Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bio products. In: Minter S.L. (ed): Alcoholic Fuels. CRC Press: 79-98.
Go to original source...
- Schaart J.G., van de Wiel C.C., Lotz L.A., Smulders M.J. (2015): Opportunities for products of new plant breeding techniques. Trends in Plant Sciences, 21: 438-449.
Go to original source...
Go to PubMed...
- Schuster M., Schweizer G., Reissmann S., Kahmann R. (2015): Genome editing in ustilago maydis using the CRISPR-CAS system. Fungal Genetics and Biology, 89: 3-9.
Go to original source...
Go to PubMed...
- Sen S., Makkar H.P.S., Becker K. (1998): Alfalfa saponins and their implication in animal nutrition. Journal of Agricultural and Food Chemistry, 461: 131-140.
Go to original source...
Go to PubMed...
- Shadle G., Chen F., Srinivasa Reddy M.S., Jackson L., Nakashima J., Dixon R.A. (2007): Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry, 68: 1521-1529.
Go to original source...
Go to PubMed...
- Shahin E.A., Spielmann A., Sukhapinda K., Simpson R.B., Yashar M. (1986): Transformation of cultivated alfalfa using disarmed Agrobacterium-tumefaciens. Crop Science, 266: 1235-1239.
Go to original source...
- Soto-Zarazua M.G., Rodrigues F., Pimentel F.B., Bah M.M., Oliveira M.B.P.P. (2016): The isoflavone content of two new alfalfa-derived products for instant beverage preparation. Food Function, 71: 364-371.
Go to original source...
Go to PubMed...
- Strizhov N., Keller M., Mathur J., Koncz-Kalman Z., Bosch D., Prudovsky E., Schell J., Sneh B., Koncz C., Zilberstein A. (1996): A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of the National Academy of Sciences of the USA, 93: 15012-15017.
Go to original source...
Go to PubMed...
- Suárez R., Calderon C., Iturriaga G. (2009): Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Science, 495: 1791-1799.
Go to original source...
- Tang L., Cai H., Ji W., Luo X., Wang Z., Wu J. (2013): Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 71: 22-30.
Go to original source...
Go to PubMed...
- Teotia S., Singh D., Tang X., Tang G. (2016): Essential RNAbased technologies and their applications in plant functional genomics. Trends in Biotechnology, 34: 106-123.
Go to original source...
Go to PubMed...
- Tesfaye M., Temple S.J., Allan D.L., Vance C.P., Samac D.A. (2001): Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiology, 127: 1836-1844.
Go to original source...
- Tesfaye M., Denton M.D., Samac D.A., Vance C.P. (2005): Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil, 2691-2692: 233-243.
Go to original source...
- Tesfaye M., Kevin A.T., Silverstein B., Bruna B.D. et al. (2006): The Affymetrix Medicago GeneChip ® array is applicable for transcript analysis of alfalfa (Medicago sativa). Functional Plant Biology, 33: 783-788.
Go to original source...
Go to PubMed...
- Tivoli B., Baranger A., Sivasithamparam K., Barbetti M.J. (2006): Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Annals of Botany, 986: 1117-1128.
Go to original source...
Go to PubMed...
- Tohidfar M., Zare N., Jouzani G.S., Eftekhari S.M. (2013): Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Culture, 113: 227-235.
Go to original source...
- Torregrosa C., Cluzet S., Fournier J., Huguet T., Gamas P., Prosperi J.M., Jacquet C. (2004): Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Molecular Plant Microbe Interaction, 178: 909-920.
Go to original source...
Go to PubMed...
- USDA (2005): Determination of Non-regulated Status for Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate. Federal Register, Vol 70, No. 122, June 27, 2005. Available at http://edocket.access.gpo.gov/2005/pdf/E5-3323.pdf
- Vlahova M., Stefanova G., Petkov P., Barbulova A. et al. (2005): Genetic modification of alfalfa (M. sativa L.) for quality improvement and production of novel compounds. Biotechnology and Biotechnological Equipment, 19: 56-62
Go to original source...
- Wang Z., Li H., Ke Q., Jeong J.C., Lee H.S., Xu B., Deng X.P., Lim Y.P., Kwak S.S. (2014): Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 84: 67-77.
Go to original source...
Go to PubMed...
- Weeks J.T., Ye J., Rommens C.M. (2008): Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Research, 17: 587-597.
Go to original source...
Go to PubMed...
- Winicov I. (2000): Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 210: 416-422.
Go to original source...
Go to PubMed...
- Wu H.S., Shi X., Li J., Wu T.Y., Ren Q.Q., Zhang Z.H., Xiao S.H. (2016): Effects of root exudates of bivalent transgenic cotton (Bt+CpTI) plants on antioxidant proteins and growth of conventional cotton (Xinluhan 33). Journal of Environmental Biology, 37: 13-19.
- Yang S., Gao M., Xu C., Gao J., Deshpande S., Lin S., Zhu H. (2008): Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences of the USA, 105: 12164- 12169.
Go to original source...
Go to PubMed...
- Zhang H., Gou F., Zhang J., Liu W., Li Q., Mao Y., Botella J.R., Zhu J.K. (2016a): TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal, 14: 186-194.
Go to original source...
Go to PubMed...
- Zhang J., Duan Z., Zhang D., Zhang J., Di H., Wu F., Wang Y. (2016b): Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochemical and Biophysical Research Communications, 472: 75-82.
Go to original source...
Go to PubMed...
- Zhang W.J., Wang T. (2015): Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. Plant Sciences, 234: 110-118.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.