Czech J. Genet. Plant Breed., 2017, 53(4):153-158 | DOI: 10.17221/172/2016-CJGPB

Genetic analysis and fine mapping of the RK4 gene for round kernel in rice (Oryza sativa L.)Original Paper

Shengqiang LI*, Ruiyue ZHANG, Jipeng CHEN, Jie ZOU, Tao LIU, Guohua ZHOU
College of Life Science and Environmental Resources, Yichun University, Yichun, Jiangxi, P.R. China

Grain shape of rice is an important trait for both yield and quality. A rice rk4 (round kernel) mutant was obtained from the japonica variety Zhonghua 11 by radiation of 60Co-γ. The grain width of the mutant was increased and the length was decreased. Simultaneously, the 1000-grain weight was slightly reduced, therefore the grain shape of the mutant tended to be small and round. In this study, genetic analysis and gene mapping of the mutant gene were carried out using the F2 and F3 populations derived from the mutant and the indica variety Xianhui 8006. The results suggested that the round kernel was controlled by a single recessive allele (rk4) which was located on chromosome 5. The RK4 gene was further mapped between the molecular markers LSTS5-77 and LSTS5-60 with 0.57 and 0.096 cM, respectively. A BAC clone was found to span the RK4 locus, and the RK4 gene was placed in a 46 kb region that contains six annotated genes according to the available sequence annotation database. This result will help us to isolate the RK4 gene and reveal the molecular mechanism of the round kernel in rice.

Keywords: BSA; ESEM; kernel shape; SSR; STS

Published: December 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Shengqiang L, ZHANG R, CHEN J, ZOU J, LIU T, ZHOU G. Genetic analysis and fine mapping of the RK4 gene for round kernel in rice (Oryza sativa L.). Czech J. Genet. Plant Breed. 2017;53(4):153-158. doi: 10.17221/172/2016-CJGPB.
Download citation

References

  1. Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C.J., Koornneef M. (1999): Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 96: 4710-4717. Go to original source... Go to PubMed...
  2. Fan C., Xing Y., Mao H., Lu T., Han B., Xu C., Li X., Zhang Q. (2006): GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 112: 1164-1171. Go to original source... Go to PubMed...
  3. Feng Y., Lu Q., Zhai R., Zhang M., Xu Q., Yang Y., Wang S., Yuan X., Yu H., Wang Y., Wei X. (2016): Genome wide association mapping for grain shape traits in indica rice. Planta, 244: 819-830. Go to original source... Go to PubMed...
  4. Hu J., Wang Y., Fang Y., Zeng L., Xu J., Yu H., Shi Z., Pan J., Zhang D., Kang S., Zhu L., Dong G., Guo L., Zeng D., Zhang G., Xie L., Xiong G., Li J., Qian Q. (2015): A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant, 8: 1455-1465. Go to original source... Go to PubMed...
  5. Huang R., Jiang L., Zheng J., Wang T., Wang H., Huang Y., Hong Z. (2013): Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Science, 18: 218-226. Go to original source... Go to PubMed...
  6. Ishimaru K., Hirotsu N., Madoka Y., Murakami N., Hara N., Onodera H., Kashiwagi T., Ujiie K., Shimizu B., Onishi A., Miyagawa H., Katoh E. (2013): Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 45: 707-711. Go to original source... Go to PubMed...
  7. Iwata N., Omura T. (1975): Studies on the trisomics in rice plants (Oryza sativa L.) III. Relation between transonic and genetic linkage groups. Japanese Journal of Breeding, 25: 363-368. Go to original source...
  8. Iwata N., Omura T. (1984): Studies on the transonic in rice plants (Oryza sativa L.) VI. An accomplishment of a transonic series in Japonica rice plants. Japanese Journal of Genetics, 59: 199-204. Go to original source...
  9. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newberg L. (1987): MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1: 174-181. Go to original source... Go to PubMed...
  10. Li J., Thomson M., McCouch S.R. (2004): Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 168: 2187-2195. Go to original source... Go to PubMed...
  11. Li Y., Fan C., Xing Y., Jiang Y., Luo L., Sun L., Shao D., Xu C., Li X., Xiao J., He Y., Zhang Q. (2011): Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 43:1266-1269. Go to original source... Go to PubMed...
  12. Lincoln S.E., Daly M.J., Lander E.S. (1993): Constructing Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial Reference Manual. 3rd Ed. Cambridge, Whitehead Institute for Biomedical.
  13. Liu L., Tong H., Xiao Y., Che R., Xu F., Hu B., Liang C., Chu J., Li J., Chu C. (2015a): Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 112: 11102-11107. Go to original source... Go to PubMed...
  14. Liu S., Hua L., Dong S., Chen H., Zhu X., Jiang J., Zhang F., Li Y., Fang X., Chen F. (2015b): OsMAPK6, a mitogenactivated protein kinase, influences rice grain size and biomass production. Plant Journal, 84: 672-681. Go to original source... Go to PubMed...
  15. Luo M., Dennis E.S., Berger F., Peacock W.J., Chaudhury A. (2005): MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 102: 17531-17536. Go to original source... Go to PubMed...
  16. Mao H., Sun S., Yao J., Wang C., Yu S., Xu C., Li X., Zhang Q. (2010): Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 107: 19579-19584. Go to original source... Go to PubMed...
  17. Michelmore R.W., Paran I., Kesseli R.V. (1991): Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proceedings of the National Academy of Sciences of the United States of America, 88: 9828-9832. Go to original source... Go to PubMed...
  18. Murray M.G., Thompson W.F. (1980): Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4326. Go to original source... Go to PubMed...
  19. Nagata K., Ando T., Nonoue Y., Mizubayashi T., Kitazawa N., Shomura A., Matsubara K., Ono N., Mizobuchi R., Shibaya T., Ogiso-Tanaka E., Hori K., Yano M., Fukuoka S. (2015): Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross. Breeding Science, 65: 308-318. Go to original source... Go to PubMed...
  20. Sanchez A.C., Khush G.S. (1998): Inheritance and linkage relationships of twenty-one genes in rice, Oryza sativa L. SABRAO Journal of Breeding and Genetics, 30: 51-60.
  21. Shomura A., Izawa T., Ebana K., Ebitani T., Kangegae H., Konishi S., Yano M. (2008): Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 40: 1023-1028. Go to original source... Go to PubMed...
  22. Song X.J., Huang W., Shi M., Zhu M.Z., Lin H.X. (2007): A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39: 623-630. Go to original source... Go to PubMed...
  23. Tan Y.F., Xing Y.Z., Li J.X., Yu S.B., Xu C.G., Zhang Q.F. (2000): Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theoretical and Applied Genetics, 101: 823-829. Go to original source...
  24. Wan X., Weng J., Zhai H., Wang J., Lei C., Liu X., Guo T., Jiang L., Su N., Wan J. (2008): Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 179: 2239-2252. Go to original source... Go to PubMed...
  25. Wang E., Wang J., Zhu X., Hao W., Wang L., Li Q., Zhang L., He W., Lu B., Lin H., Ma H., Zhang G., He Z. (2008): Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 40: 1370-1374. Go to original source... Go to PubMed...
  26. Wang S., Wu K., Yuan Q., Liu X., Liu Z., Lin X., Zeng R., Zhu H., Dong G., Qian Q., Zhang G., Fu X. (2012): Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44: 950-954. Go to original source... Go to PubMed...
  27. Wang S., Li S., Liu Q., Wu K., Zhang J., Wang S., Wang Y., Chen X., Zhang Y., Gao C., Wang F., Huang H., Fu X. (2015a): The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 47: 949-954. Go to original source... Go to PubMed...
  28. Wang Y., Xiong G., Hu J., Jiang L., Yu H., Xu J., Fang Y., Zeng L., Xu E., Xu J., Ye W., Meng X., Liu R., Chen H., Jing Y., Wang Y., Zhu X., Li J., Qian Q. (2015b): Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 47: 944-948. Go to original source... Go to PubMed...
  29. Weng J., Gu S., Wan X., Gao H., Guo T., Su N., Lei C., Zhang X., Cheng Z., Guo X., Wang J., Jiang L., Zhai H., Wan J. (2008): Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 18: 1199-1209. Go to original source... Go to PubMed...
  30. Xing Y.Z., Tan Y.F., Hua J.P., Sun X.L., Xu C.G., Zhang Q. (2002): Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics, 105: 248-257. Go to original source... Go to PubMed...
  31. Yin C., Li H., Li S., Xu L., Zhao Z., Wang J. (2015): Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines. Theoretical and Applied Genetics, 128: 1969-1986. Go to original source... Go to PubMed...
  32. Yoon D.B., Kang K.H., Kim H.J., Ju H.G., Kwon S.J., Suh J.P., Jeong O.Y., Ahn S.N. (2006): Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theoretical and Applied Genetics, 112: 1052-1062. Go to original source... Go to PubMed...
  33. Zhou Y., Miao J., Gu H., Peng X., Leburu M., Yuan F., Gu H., Gao Y., Tao Y., Zhu J., Gong Z., Yi C., Gu M., Yang Z., Liang G. (2015): Natural variations in SLG7 regulate grain shape in rice. Genetics, 201: 1591-1599. Go to original source... Go to PubMed...
  34. Zuo J., Li J. (2014): Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics, 48: 99-118. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.