Czech J. Genet. Plant Breed., 2011, 47(10):S135-S141 | DOI: 10.17221/3268-CJGPB

Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense Snakin-1 gene

P. Faccio1, C. Vazquez-Rovere2, E. Hopp2, G. González1, C. Décima-Oneto1, E. Favret3, A. Díaz Paleo1, P. Franzone1
1 Instituto de Genética Ewald A. Favret, CICVyA, INTA-Castelar, Argentina
2 Instituto de Biotecnología, CICVyA, INTA-Castelar, Argentina
3 Instituto de Suelos, CIRN, INTA-Castelar, Argentina

Great efforts are currently being devoted to studying the use of transgenes to confer resistance to phytopathogenic fungi. Snakin-1 is a broad-spectrum antimicrobial peptide isolated from Solanum that is active in vitro against bacteria and fungi. Recently, it was reported that overexpression of the snakin-1 (SN1) gene in transgenic potato plants enhanced resistance to Rhizoctonia solani and Erwinia carotovora. In this work wheat transgenic plants that constitutively expressed the S. chacoense SN1 gene were challenged with Blumeria graminis f.sp. tritici. Enhanced resistance to the pathogen was observed in two transgenic lines in which the development of the disease was delayed and reduced compared with the wild type variety ProINTA Federal. An association between high resistance to the pathogen and a high level of snakin-1 transcripts in the plant was observed. This is the first report on SN1 gene expression in Gramineae and its effects on wheat powdery mildew development.

Keywords: antimicrobial peptides; Blumeria graminis f.sp. tritici; genetic transformation; snakin-1; wheat

Published: December 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Faccio P, Vazquez-Rovere C, Hopp E, González G, Décima-Oneto C, Favret E, et al.. Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense Snakin-1 gene. Czech J. Genet. Plant Breed. 2011;47(Special Issue):S135-141. doi: 10.17221/3268-CJGPB.
Download citation

References

  1. Almasia N., Bazzini A.A., Hopp H.E., VazquezRovere C. (2008): Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Molecular Plant Pathology, 9: 329-338. Go to original source... Go to PubMed...
  2. Alvarez M.L., Guelman S., Halford N.G., Lustig S., Reggiardo M.I., Ryabushkina N., Shewry P., Stein J., Vallejos R.H. (2000): Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theoretical and Applied Genetics, 100: 319-327. Go to original source...
  3. Anand A., Trick H.N., Gill B.S., Muthukrishnan S. (2003): Stable transgene expression and random gene silencing in wheat. Plant Biotechnology Journal, 1: 241-251. Go to original source... Go to PubMed...
  4. Berrocal-Lobo M., Segura A., Moreno M., Lopez G., García-Olmedo F., Molina A. (2002): Snakin-2, an antibiotical peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology, 128: 951-961. Go to original source... Go to PubMed...
  5. Cao J., Duan X., McElroy D., Wu R. (1992): Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Reports, 11: 586-591. Go to original source... Go to PubMed...
  6. Chen L., Zhang Z.Y., Liang H.X., Liu H., Du L., Xu H., Xin Z. (2008): Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany, 59: 4195-4204. Go to original source... Go to PubMed...
  7. Chen Y., Hunger R.M., Carver B.F., Zhang H., Yan L. (2009): Genetic characterization of powdery mildew resistance in U.S. hard winter wheat. Molecular Breeding, 24: 141-152. Go to original source...
  8. Dahleen L.S., Okubara P.A., Blechl A.E. (2001): Transgenic approaches to combat Fusarium head blight in wheat and barley. Crop Science, 41: 628- 637. Go to original source...
  9. Dellaporta S.L., Wood J., Hicks J.B. (1983): A plant DNA minipreparation: version II. Plant Molecular Biology Reports, 1: 19-21. Go to original source...
  10. Di Rienzo J.A., Casanoves F., Balz arini M.G, Gonzalez L., Tablada M., Robledo C.W. (2010): InfoStat versión 2010. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  11. FAOSTAT. Available at http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed October 13, 2010)
  12. Grover A., Gowthaman R. (2003): Strategies for development of fungus-resistant transgenic plants. Current Science, 84: 330-340.
  13. Hautea R.A., Coffman W.R., Sorrells M.E., Bergstrom G.C. (1987): Inheritance of partial resistance to powdery mildew in spring wheat. Theoretical and Applied Genetics, 73: 609-615. Go to original source... Go to PubMed...
  14. Hÿckelhoven R. (2005): Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiology Letters, 245: 9-17. Go to original source... Go to PubMed...
  15. Lillemo M., Skinnes H. (2006): Genetic analysis of partial resistance to powdery mildew in bread wheat line Saar. The American Phytopathological Society. Plant Disease, 90: 225-228. Go to original source... Go to PubMed...
  16. Liu S., Griffey C.A., Saghai Maroof M.A. (2001): Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Science, 41: 1268-1275. Go to original source...
  17. MacKintosh C.A., Garvin D.F., Radmer L.E., Heinen S.J., Muehlbauer G.J. (2006): A model wheat cultivar for transformation to improve resistance to Fusarium head blight. Plant Cell Reports, 25: 313-319. Go to original source... Go to PubMed...
  18. Makandar R., Essig J.S., Schapaugh M.A., Trick H.N., Shah J. (2006): Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 19: 123-129. Go to original source... Go to PubMed...
  19. McElroy D., Chamberlain D.A., Moon E., Wilson K.J. (1995): Development of a gusA reporter gene construct for cereal transformation: Availability of plant transformation vectors from the CAMBIA Molecular Genetic Resource Service. Molecular Breeding, 1: 27-37. Go to original source...
  20. Mikulová K., Bojnanská K., Cervená V. (2008): Assessment of partial resistance to powdery mildew in hexaploid wheat genotypes. Biology, 63: 477-481. Go to original source...
  21. Oldach K.H., Becker D., Lörz H. (2001): Heterologous expression of gene mediating enhanced fungal resistance in transgenic wheat. Molecular Plant-Microbe Interactions, 14: 832-838. Go to original source... Go to PubMed...
  22. Patnaik D., Khurana P. (2001): Wheat biotechnology: a minireview. Electronic Journal of Biotechnology, 4: 74-102. Go to original source...
  23. Pellegrineschi A., Fennell S., McLean S., Brito R.M., Velázquez L., Salgado M., Olivares J.J., Hernandez R., Hoisington D. (1999): Wheat transformation in CIMMYT: A description of a service laboratory. In Vitro Cellular and Developmental Biology, 35: 43-49. Go to PubMed...
  24. Pfaffl M.W., Horgan G.W., Dempfle L. (2002): Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30: 36. Go to original source... Go to PubMed...
  25. Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W. (1984): Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences USA, 81: 8014-8018. Go to original source... Go to PubMed...
  26. Sahrawat A.K., Becker D., Lutticke S., Lörz H. (2003): Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science, 165: 1147-1168. Go to original source...
  27. Segura A., Moreno M., Madueño F., Molina A., García-Olmedo F. (1999): Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions, 12: 16-23. Go to original source... Go to PubMed...
  28. Shaner G. (1973): Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology, 63: 867-872 Go to original source...
  29. Silverstein K.A., Moskal W.A. Jr, Wu H.C., Underwood B.A., Graham M.A., Town C.D., Vandenbosch K.A. (2007): Small cysteine-rich peptides resembling antimicrobial peptides have been underpredicted in plants. Plant Journal, 51: 262-280. Go to original source... Go to PubMed...
  30. Stephenson T.J., McIntyre C.L., Collet C., Xue G. (2007): Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Molecular Biology, 65: 77-92 Go to original source... Go to PubMed...
  31. Tavares L.S., Santos M. De O., Viccini L.F., Moreira J.S., Miller R.N.G., Franco O.L. (2008): Biotechnological potential of antimicrobial peptides from flowers. Peptides, 29: 1842-1851. Go to original source... Go to PubMed...
  32. Vasil V., Srivastava V., Castillo A.M., Fromm M.E., Vasil I.K. (1993): Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Biotechnology, 11: 1553-1558. Go to original source...
  33. Zhang K., Zhao L., Hai Y., Chen G., Tian J. (2008): QTL Mapping for adult-plant resistance to powdery mildew, lodging resistance, and internode length below spike in wheat. Acta Agronomica Sinica, 34: 1350-1357. Go to original source...
  34. JMicroVision (2006): Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.2.5. Available at http://www.jmicrovision.com (accessed July 2, 2006)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.