Czech J. Genet. Plant Breed., 2011, 47(4):156-165 | DOI: 10.17221/140/2011-CJGPB

Identification of apple scab and powdery mildew resistance genes in Czech apple (Malus × domestica) genetic resources by PCR molecular markersOriginal Paper

Josef Patzak1, František Paprštein2, Alena Henychová1
1 Hop Research Institute, Žatec, Czech Republic
2 Research and Breeding Institute of Pomology in Holovousy, Holovousy, Hořice v Podkrkonoší, Czech Republic

The presence of genes for resistance to scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) was studied using molecular markers in a sample of 279 apple cultivars from the Czech collection of apple genetic resources. The sample comprised 37 cultivars supposed to have the Vf gene for scab resistance, 97 reference world cultivars and 145 old and local cultivars. Six PCR molecular markers for the scab resistance genes Vf, Vm, Vbj, Vr and Vh and three PCR molecular markers for the powdery mildew resistance genes Pl-w, Pl-1 and Pl-d were used. The marker for the major scab resistance gene Vf was detected in all cultivars supposed to have Vf, except in Romus 1, and in the three small-fruited cultivars Malus Evereste, Golden Gem and Hilleri. The markers of the Vr and Vh scab resistance genes were detected in 22 cultivars in combination with the marker for Vf, in 56 reference world cultivars and in 82 old and local apple cultivars. PCR molecular markers for one or two of the powdery mildew resistance genes were detected in the small-fruited cultivars Malus Evereste, Golden Gem, prof. Sprengeri and Hilleri; and in the larger fruited cultivars Hagloe Crab, Borovinka and Tita Zetei. We did not find markers for the scab resistance genes Vm and Vbj in any of the studied cultivars. They are absent also in the remaining part of the Czech collection of apple genetic resources. PCR molecular markers are useful tools for the identification of resistance genes within apple germplasm collections and can be used to increase the number of sources for disease resistance in breeding programmes.

Keywords: apple; Czech genetic resources; Malus × domestica; Podosphaera leucotricha; powdery mildew; resistance PCR molecular markers; scab; Venturia inaequalis

Published: December 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Patzak J, Paprštein F, Henychová A. Identification of apple scab and powdery mildew resistance genes in Czech apple (Malus × domestica) genetic resources by PCR molecular markers. Czech J. Genet. Plant Breed. 2011;47(4):156-165. doi: 10.17221/140/2011-CJGPB.
Download citation

References

  1. Boudichevskaia A., Flachowsky H., Peil A., Fisher C., Dunemann F. (2006): Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/ Vx from R12740-7A apple and its utility for molecular breeding. Tree Genetics and Genomes, 2: 186-195. Go to original source...
  2. Bus V.G.M., Bassett H.C.M., Bowatte D., Chagné D., Ranatunga C.A., Ulluwishewa D., Wiedow C., Gardiner S.E. (2010): Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genetics and Genomes, 6: 477-487. Go to original source...
  3. Bus V.G.M., Rikkerink E., Aldwinckle H.S., Caffier V., Durel C.E., Gardiner S., Gessler C., Groenwold R., Laurens F., Le Cam B., Luby J., Meulenbroek M., Kellerhals M., Parisi L., Patocchi A., Plummer K., Schouten H.J., Tartarini S., Van de Weg W.E. (2009): A proposal for the nomenclature of Venturia inaequalis races. Acta Horticulturae, 814: 739-746. Go to original source...
  4. Bus V.G.M., Laurens F.N.D., Van de Weg W.E., Rusholme R.L., Rikkerink E.H.A., Gardiner S.E., Bassett H.C.M., Kodde L.P., Plummer K.M. (2005): The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytopatologist, 166: 1035-1049. Go to original source... Go to PubMed...
  5. Cheng F.S., Weeden N.F., Brown S.K., Aldwinckle H.S., Gardiner S.E., Bus W.G. (1998): Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome, 41: 208-214. Go to original source...
  6. Crosby J.A., Janick J., Pecknold P.C., Korban S.S., O'Connon P.A., Ries S.M., Goffreda J., Voordeckers A. (1992): Breeding apples for scab resistance: 1945-1990. Fruit Varieties Journal, 46: 145-166.
  7. Evans K.M., James C.M. (2003): Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theoretical and Applied Genetics, 106: 1178-1183. Go to original source... Go to PubMed...
  8. Evans K.M., Patocchi A., Rezzonico F., Mathis F., Durel C.E., Fernández-Fernández F., Boudichevskaia A., Dunemann F., Stankiewicz-Kosyl M., Gianfranceschi L., Komjanc M., Lateur M., Madduri M., Noordijk Y., van de Weg W.E. (2011): Genotyping of pedigreed apple breeding material with a genomecovering set of SSRs: trueness-to-type of cultivars and their parentages. Molecular Breeding, 28: 535-547. Go to original source...
  9. Fisher M., Fisher C., Dierend W. (2005): Evaluation of the stability of scab resistance in apple: a co-operation between gene bank curator, breeder and fruit grower. PGR Newsletter, 142: 36-42.
  10. Gessler C., Patocchi A., Sansavini S., Tartarini S., Gianfranceschi L. (2006): Venturia inaequalis resistance in apple. Critical Reviews in Plant Science, 25: 473-503. Go to original source...
  11. Goulao L., Cabrita C.M., Oliviera C.M., Leitao J.M. (2001): Comparing RAPD and AFLP analysis in discrimination and estimation of genetic similarities among apple (Malus × domestica Borkh.) cultivars. Euphytica, 119: 259-270. Go to original source...
  12. Gygax M., Gianfrancescchi L., Liebhard R., Kellerhals M., Gessler C., Patocchi A. (2004): Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theoretical and Applied Genetics, 109: 1702-1709. Go to original source... Go to PubMed...
  13. Hemmat M., Brown S.K., Aldwinckle H.S., Weeden N.F. (2003): Identification and mapping of markers for resistance to Apple scab from "Antonovka" and "Hansen's baccata #2". Acta Horticulturae, 622: 153-161. Go to original source...
  14. James C.M., Clarke J.B., Evans K.M. (2004): Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theoretical and Applied Genetics, 110: 175-181. Go to original source... Go to PubMed...
  15. Markussen T., Kruger J., Schmidt H., Dunemann F. (1995): Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl 1 from Malus robusta in cultivated apple. Plant Breeding, 114: 530-534. Go to original source...
  16. Patzak J. (2001): Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica, 121: 9-18. Go to original source...
  17. Patocchi A., Bigler B., Koller B., Kellerhals M., Gessler C. (2004): Vr2: a new apple scab resistance gene. Theoretical and Applied Genetics, 109: 1087-1092. Go to original source... Go to PubMed...
  18. Seglias N., Gessler C. (1997): Genetics of apple powdery mildew resistance from Malus zumi (Pl 2). IOBC (WPRS) Bull: Integrated Control of Pome Fruit Diseases, Croydon, 20: 195-208.
  19. Soriano J.M., Joshi S.G., van Kaauwen M., Noordijk Y., Groenwold R., Henken B., van de Weg W.E., Schoulen H.J. (2009): Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genetics and Genomes, 5: 475-482. Go to original source...
  20. Tartarini S., Gianfransceschi L., Sansavini S., Gessler C. (1999): Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breeding, 118: 183-166. Go to original source...
  21. Urbanovich O., Kazlovskaya Z. (2008): Identification of scab resistance genes in apple trees by molecular markers. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkyste ir Daržininkyste, 27: 347-357.
  22. Zoufalá J., Vejl P., Melounová M., Blažek J., Křelinová J. (2009): Apple genetic resources and their molecular analysis. Agriculture, 55: 69-79.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.