Czech J. Genet. Plant Breed., 2025, 61(2):77-85 | DOI: 10.17221/112/2024-CJGPB

Ectopic expression of the cowpea (Vigna unguiculata) VuCERK1 gene confers enhanced resistance to Pto DC3000 hrcC- in ArabidopsisOriginal Paper

Weida Chen1,2,*, Lifen Gao3, Gao Chen1, Ting Yang2, Zixin Zhao1, Wenhao Xia1, Niannian Fan1, Siming Chen1
1 Hubei Province Engineering Research Center of Legume Plants, College of Life Science, Jianghan University, Wuhan, Hubei, China
2 Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, Hubei, China
3 Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China

Pattern recognition receptors (PRRs) play multiple roles in plants. As a kind of PRRs, chitin elicitor receptor kinase 1 (CERK1) proteins were reported to function in plant resistance to fungal and bacterial pathogens, and tolerance to salt stress. In this study, a predicted cowpea CERK1 homologous gene, designated as VuCERK1, was identified by database search. VuCERK1 protein contains 618 amino acid residues, with a predicted molecular mass of 67.5 kDa and a predicted isoelectric point of 5.04. VuCERK1 shows 58% and 60% sequence identity with AtCERK1 and OsCERK1, respectively. VuCERK1 also shows similar subcellular pattern with AtCERK1 and OsCERK1, suggesting VuCERK1 may function in cowpea immune responses. Gene expression assay indicated, that VuCERK1 was expressed in four different seedling tissues tested, comprising first leave, epicotyl, hypocotyl and root, and it could be induced by salt stress. Furthermore, transient expression of VuCERK1 in Nicotiana benthamiana induced obvious cell death. In addition, heterologous overexpression of VuCERK1 in Arabidopsis thaliana conferred enhanced disease resistance to Pseudomonas syringae pv. tomato strain DC3000 hrcC- (Pto DC3000 hrcC-).

Keywords: chitin elicitor receptor kinase 1; cowpea; pattern recognition receptors; Pseudomonas syringae pv. tomato strain DC3000 hrcC-

Received: September 11, 2024; Revised: December 13, 2024; Accepted: January 20, 2025; Prepublished online: February 17, 2025; Published: April 15, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Chen W, Gao L, Chen G, Yang T, Zhao Z, Xia W, et al.. Ectopic expression of the cowpea (Vigna unguiculata) VuCERK1 gene confers enhanced resistance to Pto DC3000 hrcC- in Arabidopsis. Czech J. Genet. Plant Breed. 2025;61(2):77-85. doi: 10.17221/112/2024-CJGPB.
Download citation

Supplementary files:

Download fileChen_ESM.pdf

File size: 89.64 kB

References

  1. Ao Y., Li Z.Q., Feng D.R., Xiong F., Liu J., Li J.F., Wang M.L., Wang J.F., Liu B., Wang H.B. (2014): OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. The Plant Journal 80: 1072-1084. Go to original source... Go to PubMed...
  2. Cao Y.R., Liang Y., Tanaka K., Nguyen C.T., Jedrzejczak R.P., Joachimiak A., Stacey G. (2014): The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife, 3: e03766. Go to original source... Go to PubMed...
  3. Chen L.T., Hamada S., Fujiwara M., Zhu T.H., Thao N.P., Wong H.L., Krishna P., Ueda T., Kaku H., Shibuya N., Kawasaki T., Shimamoto K. (2010): The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe, 7: 185-196. Go to original source... Go to PubMed...
  4. Chen Q.M., Dong C.H., Sun X.H., Zhang Y.G., Dai H.Y., Bai S.H. (2020): Overexpression of an apple LysM-containing protein gene, MdCERK1-2, confers improved resistance to the pathogenic fungus, Alternaria alternata, in Nicotiana benthamiana. BMC Plant Biology, 20: 146. Go to original source... Go to PubMed...
  5. Desaki Y., Miyata K., Suzuki M., Shibuya N., Kaku H. (2018): Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immunity, 24: 92-100. Go to original source... Go to PubMed...
  6. Desaki Y., Kohari M., Shibuya N., Kaku H. (2019): MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. Journal Of General Plant Pathology, 85: 1-11. Go to original source...
  7. Espinoza C., Liang Y., Stacey G. (2017): Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis. The Plant Journal, 89: 984-995. Go to original source... Go to PubMed...
  8. Gómez-Gómez L., Boller T. (2000): FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5: 1003-1011. Go to original source... Go to PubMed...
  9. Gust A.A., Willmann R., Desaki Y., Grabherr H.M., Nürnberger T. (2012): Plant LysM proteins: Modules mediating symbiosis and immunity. Trends in Plant Science, 17: 495-502. Go to original source... Go to PubMed...
  10. Hayafune M., Berisio R., Marchetti R., Silipo A., Kayama M., Desaki Y., Arima S., Squeglia F., Ruggiero A., Tokuyasu K., Molinaro A., Kaku H., Shibuya N. (2014): Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, 111: E404-E413. Go to original source... Go to PubMed...
  11. Huffaker A., Ryan C.A. (2007): Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proceedings of the National Academy of Sciences, 104: 10732-10736. Go to original source... Go to PubMed...
  12. Iizasa E., Mitsutomi M., Nagano Y. (2010): Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. Journal of Biological Chemistry, 285: 2996-3004. Go to original source... Go to PubMed...
  13. Kaku H., Nishizawa Y., Ishii-Minami N., Akimoto-Tomiyama C., Dohmae N., Takio K., Minami E., Shibuya N. (2006): Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103: 11086-11091. Go to original source... Go to PubMed...
  14. Krol E., Mentzel T., Chinchilla D., Boller T., Felix G., Kemmerling B., Postel S., Arents M., Jeworutzki E., Al-Rasheid K.A., Becker D., Hedrich R. (2010): Perception of the Arabidopsis danger signal peptide1 involves the pattern recognition receptor PEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry 285: 13471-13479. Go to original source... Go to PubMed...
  15. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. (2004): The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 16: 3496-3507. Go to original source... Go to PubMed...
  16. Liu L.J., Zhang Y.Y., Tang S.Y., Zhao Q.Z., Zhang Z.H., Zhang H.W., Dong L., Guo H.S., Xie Q. (2010): An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. The Plant Journal, 61: 893-903. Go to original source... Go to PubMed...
  17. Liu T.T., Liu Z.X., Song C.J., Hu Y.F., Han Z.F., She J., Fan F.F., Wang J.W., Jin C.W., Chang J.B., Zhou J.M., Chai J.J. (2012): Chitin-induced dimerization activates a plant immune receptor. Science, 336: 1160-1164. Go to original source... Go to PubMed...
  18. Macho A.P., Zipfel C. (2014): Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54: 263-272. Go to original source... Go to PubMed...
  19. Mengiste T., Chen X., Salmeron J., Dietrich R. (2003): The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell, 15: 2551-2565. Go to original source... Go to PubMed...
  20. Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., Narusaka Y., Kawakami N., Kaku H., Shibuya N. (2007): CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 104: 19613-19618. Go to original source... Go to PubMed...
  21. Petutschnig E.K., Jones A.M., Serazetdinova L., Lipka U., Lipka V. (2010): The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry, 285: 28902-28911. Go to original source... Go to PubMed...
  22. Pietraszewska-Bogiel A., Lefebvre B., Koini M.A., Klaus-Heisen D., Takken F.L, Geurts R., Cullimore J.V., Gadella T.W. (2013): Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS ONE, 8: e65055. Go to original source... Go to PubMed...
  23. Ravelombola W., Qin J., Weng Y.J., Mou B.Q., Shi A.N. (2019): A simple and cost-effective approach for salt tolerance evaluation in cowpea (Vigna unguiculata) seedlings. Hortscience, 54: 1280-1287. Go to original source...
  24. Sadhukhan A., Panda S.K., Sahoo L. (2014): The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses. Plant Physiology and Biochemistry, 83: 51-56. Go to original source... Go to PubMed...
  25. Shi H., Shen Q.J., Qi Y.P., Yan H.J., Nie H.Z., Chen Y.F., Zhao T., Katagiri F., Tang D.Z. (2013a): BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in. Plant Cell, 25: 1143-1157. Go to original source... Go to PubMed...
  26. Shi X.Z., Zhou J., Lan J.F., Jia Y.P., Zhao X.F., Wang J.X. (2013b): A Lysin motif (LysM)-containing protein functions in antibacterial responses of red swamp crayfish, Procambarus clarkii. Developmental and Comparative Immunology, 40: 311-319. Go to original source... Go to PubMed...
  27. Shi X.Z., Feng X.W., Sun J.J., Yang M.C., Lan J.F., Zhao X.F., Wang J.X. (2016): Involvement of a LysM and putative peptidoglycan-binding domain-containing protein in the antibacterial immune response of kuruma shrimp Marsupenaeus japonicus. Fish & Shellfish Immunology, 54: 489-498. Go to original source... Go to PubMed...
  28. Shimizu T., Nakano T., Takamizawa D., Desaki Y., Ishii-Minami N., Nishizawa Y., Minami E., Okada K., Yamane H., Kaku H., Shibuya N. (2010): Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. The Plant Journal, 64: 204-214. Go to original source... Go to PubMed...
  29. Shinya T., Yamaguchi K., Desaki Y., Yamada K., Narisawa T., Kobayashi Y., Maeda K., Suzuki M., Tanimoto T., Takeda J., Nakashima M., Funama R., Narusaka M., Narusaka Y., Kaku H., Kawasaki T., Shibuya N. (2014): Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. The Plant Journal, 79: 56-66. Go to original source... Go to PubMed...
  30. Tang D.Z., Wang G.X., Zhou J.M. (2017): Receptor kinases in plant-pathogen interactions: More than pattern recognition. The Plant Cell, 29: 618-637. Go to original source... Go to PubMed...
  31. Wan J.R., Zhang X.C., Neece D., Ramonell K.M., Clough S., Kim S.Y., Stacey M.G., Stacey G. (2008): A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. The Plant Cell, 20: 471-481. Go to original source... Go to PubMed...
  32. Willmann R., Lajunen H.M., Erbs G., Newman M.A., Kolb D., Tsuda K., Katagiri F., Fliegmann J., Bono J.J., Cullimore J.V., Jehle A.K., Götz F., Kulik A., Molinaro A., Lipka V., Gust A.A., Nürnberger T. (2011): Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, 108: 19824-19829. Go to original source... Go to PubMed...
  33. Wu Y., Zhou J.M. (2013): Receptor-like kinases in plant innate immunity. Journal of Integrative Plant Biology, 55: 1271-1286. Go to original source... Go to PubMed...
  34. Yamaguchi K., Mezaki H., Fujiwara M., Hara Y., Kawasaki T. (2017): Arabidopsis ubiquitin ligase PUB12 interacts with and negatively regulates Chitin Elicitor Receptor Kinase 1 (CERK1). PLoS ONE, 12: e0188886. Go to original source... Go to PubMed...
  35. Yamaguchi Y., Huffaker A., Bryan A.C., Tax F.E., Ryan C.A. (2010): PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. The Plant Cell, 22: 508-522. Go to original source... Go to PubMed...
  36. Yang C., Wang E.T., Liu J. (2022): CERK1, more than a co-receptor in plant microbe interactions. New Phytologist, 234: 1606-1613. Go to original source... Go to PubMed...
  37. Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J.D., Boller T., Felix G. (2006): Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125: 749-760. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.