Czech J. Genet. Plant Breed., 2025, 61(1):23-30 | DOI: 10.17221/66/2024-CJGPB

Detection of genomic loci associated with days to heading in tropical japonica rice through QTL-seqOriginal Paper

Khairul Yusuf Nasution1, Dani Satyawan2, Muhamad Yunus3, Azri Kusuma Dewi1, Puput Melati4, Marina Yuniawati Maryono1, Ita Dwimahyani1, Wening Enggarini2, Sobrizal ORCID...1*
1 Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Bogor, West Java, Indonesia
2 Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Bogor, West Java, Indonesia
3 Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Indonesia, Bogor, West Java, Indonesia
4 Directorate of Laboratory Management, Research Facilities, and Science and Technology Area, Deputy for Infrastructure Research and Innovation, National Research and Innovation Agency, South Tangerang, Banten, Indonesia

This study investigated the genetic basis of days to heading (DTH) in tropical japonica rice using F2 populations derived from late-maturing Rojolele and early-maturing Rojolele Srinuk varieties. Phenotypic analysis of DTH showed continuous distribution and positive skewness. Whole genome sequencing (WGS) derived single nucleotide polymorphism (SNP) from early and late-heading bulks were used to identify three candidate regions with strong association to DTH: qDTH3.1 and qDTH3.2 on chromosome 3, and qDTH7.1 on chromosome 7, with the latter linked to the Oryza sativa Pseudo-Response Regulator 37 (OsPRR37) gene. InDel markers validated qDTH7.1’s significant linkage to DTH, particularly marker ID14, which is effective for marker-assisted selection of early DTH in Rojolele background.

Keywords: bulked segregant analysis; flowering time; genetic regulation; Oryza sativa; whole genome sequencing

Received: June 13, 2024; Revised: October 29, 2024; Accepted: November 7, 2024; Prepublished online: December 11, 2024; Published: January 14, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nasution KY, Satyawan D, Yunus M, Dewi AK, Melati P, Maryono MY, et al.. Detection of genomic loci associated with days to heading in tropical japonica rice through QTL-seq. Czech J. Genet. Plant Breed. 2025;61(1):23-30. doi: 10.17221/66/2024-CJGPB.
Download citation

Supplementary files:

Download fileNasution_ESM.pdf

File size: 97.48 kB

References

  1. Bommisetty R., Chakravartty N., Bodanapu R., Naik J.B., Panda S.K., Lekkala S.P., Lalam K., Thomas G., Mallikarjuna S.J., Eswar G.R., Kadambari G.M., Bollineni S.N., Issa K., Akkareddy S., Srilakshmi C., Hariprasadreddy K., Rameshbabu P., Sudhakar P., Gupta S., Lachagari V.B.R., Vemireddy L.R. (2020): Discovery of genomic regions and candidate genes for grain weight employing next generation sequencing based QTL-seq approach in rice (Oryza sativa L.). Molecular Biology Reports, 47: 8615-8627. Go to original source... Go to PubMed...
  2. Cao M., Li S., Deng Q., Wang H., Yang R. (2021a): Identification of a major-effect QTL associated with pre-harvest sprouting in cucumber (Cucumis sativus L.) using the QTL-seq method. BMC Genomics, 22: 1-11. Go to original source... Go to PubMed...
  3. Cao S., Luo X., Xu D., Tian X., Song J., Xia X., Chu C., He Z. (2021b): Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. New Phytologist, 230: 1731-1745. Go to original source... Go to PubMed...
  4. Chairunisa, Zahra F., Nugroho S. (2020): Agronomic characteristics and yield component of Rojolele transgenic rice resistant to Scirpophaga incertulas in biosafety containment. In: Life and Environmental Sciences Academics Forum, West Java, Nov 1, 2018: 1-6. Go to original source...
  5. Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. (2012): A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118, iso-2, iso-3. Fly, 6: 80-92. Go to original source... Go to PubMed...
  6. Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M. (2021): Twelve years of SAMtools and BCFtools. Gigascience, 10: 1-4. Go to original source... Go to PubMed...
  7. Dellaporta S.L., Wood J., Hicks J.B. (1983): A plant DNA minipreparation: Version II. Plant Molecular Biology Reports, 1: 19-21. Go to original source...
  8. Kim S.R., Torollo G., Yoon M.R., Kwak J., Lee C.K., Prahalada G.D., Choi I.R., Yeo U.S., Jeong O.Y., Jena K.K., Lee J.S. (2018): Loss of function alleles of Heading date 1 (Hd1) are associated with adaptation of temperate japonica rice plants to the tropical region. Frontiers in Plant Science, 9: 1-14. Go to original source... Go to PubMed...
  9. Li H., Durbin R. (2009): Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25: 1754-1760. Go to original source... Go to PubMed...
  10. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. (2009): The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25: 2078-2079. Go to original source... Go to PubMed...
  11. Modi A., Vai S., Caramelli D., Lari M. (2021): The Illumina Sequencing Protocol and the NovaSeq 6000 System. Chapter 2. In: Walker J.M. (ed.): Bacterial Pangenomics: Methods and Protocols, 2nd Ed. New York, Humana Press: 15-44. Go to original source...
  12. Muhamad K., Ebana K., Fukuoka S., Okuno K. (2017): Genetic relationships among improved varieties of rice (Oryza sativa L.) in Indonesia over the last 60 years as revealed by morphological traits and DNA markers. Genetic Resources and Crop Evolution, 64: 701-715. Go to original source...
  13. Sun C., Chen D., Fang J., Wang P., Deng X., Chu C. (2014): Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell, 5: 889-898. Go to original source... Go to PubMed...
  14. Sun C., He C., Zhong C., Liu S., Liu H., Luo X., Li J., Zhang Y., Guo Y., Yang B., Wang P., Deng X. (2022): Bifunctional regulators of photoperiodic flowering in short day plant rice. Frontiers in Plant Science, 13: 1-13. Go to original source... Go to PubMed...
  15. Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., Innan H., Cano L.M., Kamoun S., Terauchi R. (2013): QTL-seq: Rapid mapping of quantitative trait loci in rice by WGS of DNA from two bulked populations. Plant Journal, 74: 174-183. Go to original source... Go to PubMed...
  16. Tiwari S., Krishnamurthy S.L., Kumar V., Singh B., Rao A.R., Mithra A.S.V., Rai V., Singh A.K., Singh N.K. (2016): Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by BSA of recombinant inbred lines using 50K SNP chip. PLOS ONE, 11: 1-19. Go to original source... Go to PubMed...
  17. Wang L., Liu Y., Zhao H., Zheng Y., Bai F., Deng S., Chen Z., Wu J., Liu X. (2022): Identification of qGL3.5, a novel locus controlling grain length in rice through BSA and fine mapping. Frontiers in Plant Science, 13: 1-12. Go to original source... Go to PubMed...
  18. Wang S., Basten C.J., Zeng Z.-B. (2012): Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available on http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  19. Wu C.C., Wei F.J., Chiou W.Y., Tsai Y.C., Wu H.P., Gotarkar D., Wei Z.H., Lai M.H., Hsing Y.C. (2020): Studies of rice Hd1 haplotypes worldwide reveal adaptation of flowering time to different environments. PLOS ONE, 15: 1-20. Go to original source...
  20. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. (2012): Primer-BLAST: A tool to design target-specific primers for PCR. BMC Bioinformatics, 13: 1-11. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.