Czech J. Genet. Plant Breed., 2024, 60(2):55-69 | DOI: 10.17221/88/2023-CJGPB
Exploring strigolactones for inducing abiotic stress tolerance in plantsReview
- 1 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkiye
- 2 Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- 3 Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir, India
- 4 Department of Field Crops, Faculty of Agriculture, Harran University, Sanliurfa, Turkiye
- 5 Department of Field Crops, Faculty of Agriculture, Selcuk University, Konya, Turkiye
Strigolactones (SLs) are a comparatively novel class of phytohormones that are involved in the maintenance of plant architecture with key regulation of lateral branching. They are also reported to play an important role in regulating plant responses to various abiotic stresses. The potential of SLs to improve crop resilience and productivity needs to be effectively translated into agriculture. Therefore, both the endogenous biosynthesis of SLs and their exogenous application need to be thoroughly investigated to understand and exploit the mechanism underlying the alleviation of abiotic stress responses. Although several reviews have emphasised the biosynthesis of SLs in plants under abiotic stress, the mechanism underlying the alleviation of stress responses upon exogenous application has been less explored. Accordingly, in this review, although we have briefly discussed the beneficial effects of endogenous production of SLs in different sections, our main focus is to summarise the influence of exogenous SLs on the growth and development of different plant species grown under various abiotic stresses, including drought, nutrient, heavy metal, and salinity stress. Apart from providing an overview of the transcriptomic studies conducted to observe the alleviating effects of SLs on abiotic stress responses, the research gaps in this field were briefly discussed. The review provides insight for researchers to conduct further research on SLs and fill the gap so that they can be effectively used for sustainable agriculture.
Keywords: climate change; drought; GR24; heavy metals; nutrients; phytohormones; salinity
Received: October 25, 2023; Revised: November 1, 2023; Accepted: November 3, 2023; Prepublished online: January 2, 2024; Published: March 27, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abe S., Sado A., Tanaka K., Kisugi T., Asami K., Ota S., Kim H.I., Yoneyama K., Xie X., Ohnishi T., Seto Y., Yamaguchi S., Akiyama K., Yoneyama K., Nomura T. (2014): Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proceedings of the National Academy of Sciences, 111: 18084-18089.
Go to original source...
Go to PubMed...
- Acosta-Motos J.R., Diaz-Vivancos P., Álvarez S., Fernández-García N., Sánchez-Blanco M.J., Hernández J.A. (2015): NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology, 183: 41-51.
Go to original source...
Go to PubMed...
- Akiyama K., Matsuzaki K.-I., Hayashi H. (2005): Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435: 824-827.
Go to original source...
Go to PubMed...
- Al-Babili S., Bouwmeester H.J. (2015): Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66: 161-186.
Go to original source...
Go to PubMed...
- Alder A., Jamil M., Marzorati M., Bruno M., Vermathen M., Bigler P., Ghisla S., Bouwmeester H., Beyer P., Al-Babili S. (2012): The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science, 335: 1348-1351.
Go to original source...
Go to PubMed...
- Amtmann A., Armengaud P. (2009): Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Current Opinion in Plant Biology, 12: 275-283.
Go to original source...
Go to PubMed...
- Andreo-Jimenez B., Ruyter-Spira C., Bouwmeester H.J., Lopez-Raez J.A. (2015): Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 394: 1-19.
Go to original source...
- Aroca R., Ruiz-Lozano J.M., Zamarreño Á.M., Paz J.A., García-Mina J.M., Pozo M.J., López-Ráez J.A. (2013): Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170: 47-55.
Go to original source...
Go to PubMed...
- Atkinson N.J., Urwin P.E. (2012): The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63: 3523-3543.
Go to original source...
Go to PubMed...
- Banerjee A., Roychoudhury A. (2018): Strigolactones: Multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta Physiologiae Plantarum, 40: 86.
Go to original source...
- Banks J.M., Percival G.C., Rose G. (2019): Variations in seasonal drought tolerance rankings. Trees, 33: 1063-1072.
Go to original source...
- Baz L., Mori N., Mi J., Jamil M., Kountche B.A., Guo X., Balakrishna A., Jia K.-P., Vermathen M., Akiyama K. (2018): 3-Hydroxycarlactone, a novel product of the strigolactone biosynthesis core pathway. Molecular Plant, 11: 1312-1314.
Go to original source...
Go to PubMed...
- Beatty P.H., Good A.G. (2011): Future prospects for cereals that fix nitrogen. Science, 333: 416-417.
Go to original source...
Go to PubMed...
- Beveridge C.A., Kyozuka J. (2010): New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology, 13: 34-39.
Go to original source...
Go to PubMed...
- Beveridge C.A., Symons G.M., Murfet I.C., Ross J.J., Rameau C. (1997): The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal (s). Plant Physiology, 115: 1251.
Go to original source...
- Bhoi A., Yadu B., Chandra J., Keshavkant S. (2021): Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta, 254: 1-21.
Go to original source...
Go to PubMed...
- Bista D.R., Heckathorn S.A., Jayawardena D.M., Mishra S., Boldt J.K. (2018): Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants, 7: 28.
Go to original source...
Go to PubMed...
- Booker J., Auldridge M., Wills S., McCarty D., Klee H., Leyser O. (2004): MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology, 14: 1232-1238.
Go to original source...
Go to PubMed...
- Booker J., Sieberer T., Wright W., Williamson L., Willett B., Stirnberg P., Turnbull C., Srinivasan M., Goddard P., Leyser O. (2005): MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell, 8: 443-449.
Go to original source...
Go to PubMed...
- Borghi L., Liu G.-W., Emonet A., Kretzschmar T., Martinoia E. (2016): The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 243: 1351-1360.
Go to original source...
Go to PubMed...
- Boyer F.-D., de Saint Germain A., Pillot J.-P., Pouvreau J.-B., Chen V.X., Ramos S., Stévenin A., Simier P., Delavault P., Beau J.-M. (2012): Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: Molecule design for shoot branching. Plant Physiology, 159: 1524-1544.
Go to original source...
Go to PubMed...
- Brewer P.B., Yoneyama K., Filardo F., Meyers E., Scaffidi A., Frickey T., Akiyama K., Seto Y., Dun E.A., Cremer J.E. (2016): LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences, 113: 6301-6306.
Go to original source...
Go to PubMed...
- Butler L.G. (1995): Chemical communication between the parasitic weed Striga and its crop host: A new dimension in allelochemistry. In: Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series, Vol. 582, Washington, D.C., ACS Publications: 158-168.
Go to original source...
- Charnikhova T.V., Gaus K., Lumbroso A., Sanders M., Vincken J.-P., De Mesmaeker A., Ruyter-Spira C.P., Screpanti C., Bouwmeester H.J. (2017): Zealactones. Novel natural strigolactones from maize. Phytochemistry, 137: 123-131.
Go to original source...
Go to PubMed...
- Chen X., Shi X., Ai Q., Han J., Wang H., Fu Q. (2022): Transcriptomic and metabolomic analyses reveal that exogenous strigolactones alleviate the response of melon root to cadmium stress. Horticultural Plant Journal, 8: 637-649.
Go to original source...
- Ciura J., Kruk J. (2018): Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology, 229: 32-40.
Go to original source...
Go to PubMed...
- Cook C.E., Whichard L.P., Turner B., Wall M.E., Egley G.H. (1966): Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154: 1189-1190.
Go to original source...
Go to PubMed...
- Cook C., Whichard L.P., Wall M., Egley G.H., Coggon P., Luhan P.A., McPhail A. (1972): Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). Journal of the American Chemical Society, 94: 6198-6199.
Go to original source...
- de Jong M., George G., Ongaro V., Williamson L., Willetts B., Ljung K., McCulloch H., Leyser O. (2014): Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiology, 166: 384-395.
Go to original source...
Go to PubMed...
- Flexas J., Bota J., Loreto F., Cornic G., Sharkey T. (2004): Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6: 269-279.
Go to original source...
Go to PubMed...
- Foo E., Yoneyama K., Hugill C.J., Quittenden L.J., Reid J.B. (2013): Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant, 6: 76-87.
Go to original source...
Go to PubMed...
- Gamir J., Torres-Vera R., Rial C., Berrio E., de Souza Campos P.M., Varela R.M., Macías F.A., Pozo M.J., Flors V., López-Ráez J.A. (2020): Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell & Environment, 43: 1655-1668.
Go to original source...
Go to PubMed...
- García-Garrido J., Lendzemo V., Castellanos-Morales V., Steinkellner S., Vierheilig H. (2009): Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza, 19: 449-459.
Go to original source...
Go to PubMed...
- Gomez-Roldan V., Fermas S., Brewer P.B., Puech-Pagès V., Dun E.A., Pillot J.-P., Letisse F., Matusova R., Danoun S., Portais J.-C., Bouwmeester H., Bécard G., Beveridge C.A., Rameau C., Rochange S.F. (2008): Strigolactone inhibition of shoot branching. Nature, 455: 189-194.
Go to original source...
Go to PubMed...
- Ha C.V., Leyva-Gonzalez M.A., Osakabe Y., Tran U.T., Nishiyama R., Watanabe Y., Tanaka M., Seki M., Yamaguchi S., Dong N.V., Yamaguchi-Shinozaki K., Shinozaki K., Herrera-Estrella L., Tran L.S. (2014): Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the USA, 111: 851-856.
Go to original source...
Go to PubMed...
- Haider I., Yunmeng Z., White F., Li C., Incitti R., Alam I., Gojobori T., Ruyter-Spira C., Al-Babili S., Bouwmeester H.J. (2023): Transcriptome analysis of the phosphate starvation response sheds light on strigolactone biosynthesis in rice. The Plant Journal: For Cell and Molecular Biology, 114: 355-370.
Go to original source...
Go to PubMed...
- Hamurcu M., Khan M.K., Pandey A., Ozdemir C., Avsaroglu Z.Z., Elbasan F., Omay A.H., Gezgin S. (2020): Nitric oxide regulates watermelon (Citrullus lanatus) responses to drought stress. 3 Biotech, 10: 1-14.
Go to original source...
Go to PubMed...
- Hürkan K. (2022): Synthetic strigolactone regulates some stress related genes and transcription factors on tomato (Lycopersium esculentum L.). Journal of Agriculture, 5: 1-13.
Go to original source...
- Iqbal S., Wang X., Mubeen I., Kamran M., Kanwal I., Díaz G.A., Abbas A., Parveen A., Atiq M.N., Alshaya H. (2022): Phytohormones trigger drought tolerance in crop plants: Outlook and future perspectives. Frontiers in Plant Science, 12: 3378.
Go to original source...
Go to PubMed...
- Ito S., Nozoye T., Sasaki E., Imai M., Shiwa Y., Shibata-Hatta M., Ishige T., Fukui K., Ito K., Nakanishi H. (2015): Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS ONE, 10: e0119724.
Go to original source...
Go to PubMed...
- Jamil M., Charnikhova T., Cardoso C., Jamil T., Ueno K., Verstappen F., Asami T., Bouwmeester H. (2011): Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Research, 51: 373-385.
Go to original source...
- Kapulnik Y., Resnick N., Mayzlish-Gati E., Kaplan Y., Wininger S., Hershenhorn J., Koltai H. (2011): Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of Experimental Botany, 62: 2915-2924.
Go to original source...
Go to PubMed...
- Khan M.K., Pandey A., Hamurcu M., Avsaroglu Z.Z., Ozbek M., Omay A.H., Elbasan F., Omay M.R., Gokmen F., Topal A. (2021): Variability in physiological traits reveals boron toxicity tolerance in Aegilops species. Frontiers in Plant Science, 12: 736614.
Go to original source...
Go to PubMed...
- Khan M.K., Pandey A., Hamurcu M., Germ M., Yilmaz F.G., Ozbek M., Avsaroglu Z.Z., Topal A., Gezgin S. (2022): Nutrient homeostasis of Aegilops accessions differing in B tolerance level under boron toxic growth conditions. Biology, 11: 1094.
Go to original source...
Go to PubMed...
- Kohlen W., Charnikhova T., Liu Q., Bours R., Domagalska M.A., Beguerie S., Verstappen F., Leyser O., Bouwmeester H., Ruyter-Spira C. (2011): Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiology, 155: 974-987.
Go to original source...
Go to PubMed...
- Kohlen W., Charnikhova T., Lammers M., Pollina T., Tóth P., Haider I., Pozo M.J., de Maagd R.A., Carolien Ruyter-Spira C., Bouwmeester H.J., López-Ráez J.A. (2012): The tomato CAROTENOID CLEAVAGE DIOXYGENASE 8 (S l CCD 8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196: 535-547.
Go to original source...
Go to PubMed...
- Kong C.-C., Ren C.-G., Li R.-Z., Xie Z.-H., Wang J.-P. (2017): Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in Sesbania cannabina seedlings. Journal of Plant Growth Regulation, 36: 734-742.
Go to original source...
- Kretzschmar T., Kohlen W., Sasse J., Borghi L., Schlegel M., Bachelier J.B., Reinhardt D., Bours R., Bouwmeester H.J., Martinoia E. (2012): A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 483: 341-344.
Go to original source...
Go to PubMed...
- Li Y., Li S., Feng Q., Zhang J., Han X., Zhang L., Yang F., Zhou J. (2022): Effects of exogenous Strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum. seedlings under drought stress. BMC Plant Biology, 22: 578.
Go to original source...
Go to PubMed...
- Lin H., Wang R., Qian Q., Yan M., Meng X., Fu Z., Yan C., Jiang B., Su Z., Li J., Wang Y. (2009): DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell, 21: 1512-1525.
Go to original source...
Go to PubMed...
- Ling F., Su Q., Jiang H., Cui J., He X., Wu Z., Zhang Z., Liu J., Zhao Y. (2020): Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Scientific Reports, 10: 6183.
Go to original source...
Go to PubMed...
- Liu H., Li C., Yan M., Zhao Z., Huang P., Wei L., Wu X., Wang C. Liao W. (2022): Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. Journal of Plant Research, 135: 337-350.
Go to original source...
Go to PubMed...
- López-Ráez J.A., Charnikhova T., Gómez-Roldán V., Matusova R., Kohlen W., De Vos R., Verstappen F., Puech-Pages V., Bécard G., Mulder P. (2008): Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 178: 863-874.
Go to original source...
Go to PubMed...
- Lu X., Liu X., Xu J., Liu Y., Chi Y., Yu W., Li C. (2023): Strigolactone-mediated trehalose enhances salt resistance in tomato seedlings. Horticulturae, 9: 770.
Go to original source...
- Luqman M., Shahbaz M., Maqsood M.F., Farhat F., Zulfiqar U., Siddiqui M.H., Masood A., Aqeel M., Haider F.U. (2023): Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize (Zea mays L.) hybrids grown under drought stress. Plant Signaling & Behavior (published online): 2262795.
Go to original source...
- Ma C., Bian C., Liu W., Sun Z., Xi X., Guo D., Liu X., Tian Y., Wang C., Zheng X. (2022): Strigolactone alleviates the salinity-alkalinity stress of Malus hupehensis seedlings. Frontiers in Plant Science, 13: 901782.
Go to original source...
Go to PubMed...
- Ma N., Hu C., Wan L., Hu Q., Xiong J., Zhang C. (2017): Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 8: 1671.
Go to original source...
Go to PubMed...
- Mantri N., Patade V., Penna S., Ford R., Pang E. (2012): Abiotic stress responses in plants: Present and future. In: Ahmad P., Prasad M.N.V. (eds): Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. New York, Springer: 1-19.
Go to original source...
- Marzec M., Muszynska A., Gruszka D. (2013): The role of strigolactones in nutrient-stress responses in plants. International Journal of Molecular Sciences, 14: 9286-9304.
Go to original source...
Go to PubMed...
- Matusova R., Rani K., Verstappen F.W., Franssen M.C., Beale M.H., Bouwmeester H.J. (2005): The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology, 139: 920-934.
Go to original source...
Go to PubMed...
- Min Z., Li R., Chen L., Zhang Y., Li Z., Liu M., Ju Y., Fang Y. (2019): Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry, 135: 99-110.
Go to original source...
Go to PubMed...
- Mori N., Sado A., Xie X., Yoneyama K., Asami K., Seto Y., Nomura T., Yamaguchi S., Yoneyama K., Akiyama K. (2020): Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus. Phytochemistry, 174: 112349.
Go to original source...
Go to PubMed...
- Morris S.E., Turnbull C.G., Murfet I.C., Beveridge C.A. (2001): Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiology, 126: 1205-1213.
Go to original source...
Go to PubMed...
- Mostofa M.G., Rahman M.M., Nguyen K.H., Li W., Watanabe Y., Tran C.D., Zhang M., Itouga M., Fujita M., Tran L.-S.P. (2021): Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. Journal of Hazardous Materials, 415: 125589.
Go to original source...
Go to PubMed...
- Müller S., Hauck C., Schildknecht H. (1992): Germination stimulants produced by Vigna unguiculata Walp cv Saunders Upright. Journal of Plant Growth Regulation, 11: 77-84.
Go to original source...
- Munns R., Tester M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
Go to original source...
Go to PubMed...
- Naeem M.S., Warusawitharana H., Liu H., Liu D., Ahmad R., Waraich E.A., Xu L., Zhou W. (2012): 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiology and Biochemistry, 57: 84-92.
Go to original source...
Go to PubMed...
- Pandey A., Khan M.K., Hamurcu M., Brestic M., Topal A. Gezgin S. (2022): Insight into the root transcriptome of a boron-tolerant Triticum zhukovskyi genotype grown under boron toxicity. Agronomy, 12: 2421.
Go to original source...
- Pandey A., Khan M.K., Hamurcu M., Athar T., Yerlikaya B.A., Yerlikaya S., Kavas M., Rustagi A., Zargar S.M., Sofi P.A., Chaudhry B. (2023): Role of exogenous nitric oxide in protecting plants against abiotic stresses. Agronomy, 13: 1201.
Go to original source...
- Prerostova S., Kramna B., Dobrev P.I., Gaudinova A., Marsik P., Fiala R., Knirsch V., Vanek T., Kuresova G., Vankova R. (2018): Organ-specific hormonal cross-talk in phosphate deficiency. Environmental and Experimental Botany, 153: 198-208.
Go to original source...
- Qiao Y., Lu W., Wang R., Nisa Z.U., Yu Y., Jin X., Yu L., Chen C. (2020): Identification and expression analysis of strigolactone biosynthetic and signaling genes in response to salt and alkaline stresses in soybean (Glycine max). DNA and Cell Biology, 39: 1850-1861.
Go to original source...
Go to PubMed...
- Qiu C.-W., Zhang C., Wang N.-H., Mao W., Wu F. (2021): Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environmental Pollution, 273: 116486.
Go to original source...
Go to PubMed...
- Ren C.-G., Kong C.-C., Xie Z.-H. (2018): Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology, 18: 74.
Go to original source...
Go to PubMed...
- Ruiz-Lozano J.M., Aroca R., Zamarreno A.M., Molina S., Andreo-Jimenez B., Porcel R., Garcia-Mina J.M., Ruyter-Spira C., Lopez-Raez J.A. (2016): Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment, 39: 441-452.
Go to original source...
Go to PubMed...
- Sattar A., Ul-Allah S., Ijaz M., Sher A., Butt M., Abbas T., Irfan M., Fatima T., Alfarraj S., Alharbi S.A. (2021): Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Research Communications, 50: 263-272.
Go to original source...
- Sedaghat M., Tahmasebi-Sarvestani Z., Emam Y., Mokhtassi-Bidgoli A. (2017): Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology and Biochemistry, 119: 59-69.
Go to original source...
Go to PubMed...
- Seto Y., Sado A., Asami K., Hanada A., Umehara M., Akiyama K., Yamaguchi S. (2014): Carlactone is an endogenous biosynthetic precursor for strigolactones. Proceedings of the National Academy of Sciences, 111: 1640-1645.
Go to original source...
Go to PubMed...
- Sharifi P., Bidabadi S.S. (2020): Strigolactone could enhances gas-exchange through augmented antioxidant defense system in Salvia nemorosa L. plants subjected to saline conditions stress. Industrial Crops and Products, 151: 112460.
Go to original source...
- Siame B.A., Weerasuriya Y., Wood K., Ejeta G., Butler L.G. (1993): Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. Journal of Agricultural and Food Chemistry, 41: 1486-1491.
Go to original source...
- Suzuki N., Rivero R.M., Shulaev V., Blumwald E., Mittler R. (2014): Abiotic and biotic stress combinations. New Phytologist, 203: 32-43.
Go to original source...
Go to PubMed...
- Sytar O., Kumari P., Yadav S., Brestic M., Rastogi A. (2019): Phytohormone priming: Regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38: 739-752.
Go to original source...
- Tai Z., Yin X., Fang Z., Shi G., Lou L., Cai Q. (2017): Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. International Journal of Environmental Research and Public Health, 14: 852.
Go to original source...
Go to PubMed...
- Thingnam S.S., Lourembam D.S., Tongbram P.S., Lokya V., Tiwari S., Khan M.K., Pandey A., Hamurcu M., Thangjam R. (2023): A perspective review on understanding drought stress tolerance in wild banana genetic resources of Northeast India. Genes, 14: 370.
Go to original source...
Go to PubMed...
- Tigchelaar M., Battisti D.S., Naylor R.L., Ray D.K. (2018): Future warming increases probability of globally synchronized maize production shocks. Proceedings of the National Academy of Sciences, 115: 6644-6649.
Go to original source...
Go to PubMed...
- Turnbull C.G., Booker J.P., Leyser H.O. (2002): Micrografting techniques for testing long-distance signalling in Arabidopsis. The Plant Journal, 32: 255-262.
Go to original source...
Go to PubMed...
- Ueno K., Furumoto T., Umeda S., Mizutani M., Takikawa H., Batchvarova R., Sugimoto Y. (2014): Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry, 108: 122-128.
Go to original source...
Go to PubMed...
- Ueno K., Nakashima H., Mizutani M., Takikawa H., Sugimoto Y. (2018): Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants. Journal of Pesticide Science, 43: 198-206.
Go to original source...
Go to PubMed...
- Umehara M., Hanada A., Yoshida S., Akiyama K., Arite T., Takeda-Kamiya N., Magome H., Kamiya Y., Shirasu K., Yoneyama K., Kyozuka J., Yamaguchi S. (2008): Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455: 195-200.
Go to original source...
Go to PubMed...
- Umehara M., Cao M., Akiyama K., Akatsu T., Seto Y., Hanada A., Li W., Takeda-Kamiya N., Morimoto Y., Yamaguchi S. (2015): Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant and Cell Physiology, 56: 1059-1072.
Go to original source...
Go to PubMed...
- Visentin I., Vitali M., Ferrero M., Zhang Y., Ruyter-Spira C., Novak O., Strnad M., Lovisolo C., Schubert A., Cardinale F. (2016): Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. The New Phytologist, 212: 954-963.
Go to original source...
Go to PubMed...
- Vogel J.T., Walter M.H., Giavalisco P., Lytovchenko A., Kohlen W., Charnikhova T., Simkin A.J., Goulet C., Strack D., Bouwmeester H.J., Fernie A.R., Klee H.J. (2010): SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal, 61: 300-311.
Go to original source...
Go to PubMed...
- Wakabayashi T., Hamana M., Mori A., Akiyama R., Ueno K., Osakabe K., Osakabe Y., Suzuki H., Takikawa H., Mizutani M. (2019): Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Science Advances, 5: eaax9067.
Go to original source...
- Wakabayashi T., Shida K., Kitano Y., Takikawa H., Mizutani M., Sugimoto Y. (2020): CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta, 251: 1-6.
Go to original source...
Go to PubMed...
- Wakabayashi T., Ishiwa S., Shida K., Motonami N., Suzuki H., Takikawa H., Mizutani M., Sugimoto Y. (2021): Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiology, 185: 902-913.
Go to original source...
Go to PubMed...
- Wang W.N., Min Z., Wu J.R., Liu B.C., Xu X.L., Fang Y.L., Ju Y.L. (2021): Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress. Plant Physiology and Biochemistry, 167: 400-409.
Go to original source...
Go to PubMed...
- Waters M.T., Brewer P.B., Bussell J.D., Smith S.M., Beveridge C.A. (2012): The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology, 159: 1073-1085.
Go to original source...
Go to PubMed...
- Xie X., Yoneyama K., Kisugi T., Uchida K., Ito S., Akiyama K., Hayashi H., Yokota T., Nomura T., Yoneyama K. (2013): Confirming stereochemical structures of strigolactones produced by rice and tobacco. Molecular Plant, 6: 153-163.
Go to original source...
Go to PubMed...
- Xie X., Yoneyama K., Kisugi T., Nomura T., Akiyama K., Asami T., Yoneyama K. (2015): Strigolactones are transported from roots to shoots, although not through the xylem. Journal of Pesticide Science, 40: 214-216.
Go to original source...
- Xie X., Mori N., Yoneyama K., Nomura T., Uchida K., Yoneyama K., Akiyama K. (2019): Lotuslactone, a non-canonical strigolactone from Lotus japonicus. Phytochemistry, 157: 200-205.
Go to original source...
Go to PubMed...
- Xu Y., Wang Y., Xu J., Lv Z., Manzoor M.A., Mao J., Zhang X., Liu R., Wang S., Whiting M.D., Jiu S., Zhang C. (2023): Strigolactone and salicylic acid regulate the expression of multiple stress-related genes and enhance the drought resistance of cherry rootstocks. Scientia Horticulturae, 313: 111827.
Go to original source...
- Yokota T., Sakai H., Okuno K., Yoneyama K., Takeuchi Y. (1998): Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry, 49: 1967-1973.
Go to original source...
- Yoneyama K., Brewer P.B. (2021): Strigolactones, how are they synthesized to regulate plant growth and development? Current Opinion in Plant Biology, 63: 102072.
Go to original source...
Go to PubMed...
- Yoneyama K., Xie X., Kusumoto D., Sekimoto H., Sugimoto Y., Takeuchi Y., Yoneyama K. (2007a): Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 227: 125-132.
Go to original source...
Go to PubMed...
- Yoneyama K., Yoneyama K., Takeuchi Y., Sekimoto H. (2007b): Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225: 1031-1038.
Go to original source...
Go to PubMed...
- Yoneyama K., Xie X., Kim H.I., Kisugi T., Nomura T., Sekimoto H., Yokota T., Yoneyama K. (2012): How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235: 1197-1207.
Go to original source...
Go to PubMed...
- Yoneyama K., Mori N., Sato T., Yoda A., Xie X., Okamoto M., Iwanaga M., Ohnishi T., Nishiwaki H., Asami T., Yokota T., Akiyama K., Yoneyama K., Nomura T. (2018): Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytologist, 218: 1522-1533.
Go to original source...
Go to PubMed...
- Yoneyama K., Akiyama K., Brewer P.B., Mori N., Kawano-Kawada M., Haruta S., Nishiwaki H., Yamauchi S., Xie X., Umehara M. (2020a): Hydroxyl carlactone derivatives are predominant strigolactones in Arabidopsis. Plant Direct, 4: e00219.
Go to original source...
Go to PubMed...
- Yoneyama K., Xie X., Nomura T., Yoneyama K. (2020b): Do phosphate and cytokinin interact to regulate strigolactone biosynthesis or act independently? Frontiers in Plant Science, 11: 438.
Go to original source...
Go to PubMed...
- Zhang H., Zhu J., Gong Z., Zhu J.-K. (2022a): Abiotic stress responses in plants. Nature Reviews Genetics, 23: 104-119.
Go to original source...
Go to PubMed...
- Zhang X., Hao Z., Singh V.P., Zhang Y., Feng S., Xu Y., Hao F. (2022b): Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Science of the Total Environment, 838: 156021.
Go to original source...
Go to PubMed...
- Zhang X., Zhang L., Ma C., Su M., Wang J., Zheng S., Zhang T. (2022c): Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Scientia Horticulturae, 297: 110962.
Go to original source...
- Zheng Y., Wang X., Cui X., Wang K., Wang Y., He Y. (2023): Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops. Frontiers in Plant Science, 13: 1095363.
Go to original source...
Go to PubMed...
- Zhou J., Liu Y., Li Y., Ling W., Fan X., Feng Q., Ming R., Yang F. (2023): Combined analyses of transcriptome and metabolome reveal the mechanism of exogenous strigolactone regulating the response of elephant grass to drought stress. Frontiers in Plant Science, 14: 1186718.
Go to original source...
Go to PubMed...
- Zulfiqar H., Shahbaz M., Ahsan M., Nafees M., Nadeem H., Akram M., Maqsood A., Ahmar S., Kamran M., Alamri S., Siddiqui M.H., Saud S., Fahad S. (2021): Strigolactone (GR24) induced salinity tolerance in sunflower (Helianthus annuus L.) by ameliorating morpho-physiological and biochemical attributes under in vitro conditions. Journal of Plant Growth Regulation, 40: 2079-2091.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.