Czech J. Genet. Plant Breed., 2023, 59(4):196-204 | DOI: 10.17221/119/2022-CJGPB

Mapping of genomic regions associated with dwarfing and the determinate growth habit in horsegram (Macrotyloma uniflorum)Original Paper

Mala Ram Modi, Megha Katoch, Nisha Thakur, Manisha Gautam, Sunny Choudhary, Rakesh Kumar Chahota*
Department of Agricultural Biotechnology, CSK Himachal Pradesh Agriculture University, Palampur, India

Horsegram (Macrotyloma uniflorum) – an important, self-pollinated food legume, however due to limited genomic and genetic resources the genetic improvement could not be achieved as compare to other major legumes. Our work aims at finding novel microsatellite markers and their use for the construction of a linkage map from 157 individuals of F9 recombinant inbred lines (RILs) of horsegram. The determinate growth habit and plant height are important traits for its suitability for different cropping systems. The genotypic data were generated by screening 2 395 molecular markers, of which 600 (25.05 %) polymorphic markers were selected. Two-hundred eighty-seven (287) markers were mapped on ten linkage groups (LGs) at a log of odds (LOD) of 3.5 straddling 796.76 cM with 2.78 cM of marker density. For the identification of the quantitative trait loci (QTLs), the phenotypic data recorded on the RILs for the plant height and growth habit were analysed using the statistical tools JoinMap®and Windows QTL cartographer, based on the composite interval mapping (CIM) technique. Across the ten linkage groups, we detected four QTLs (LOD ≥ 2.5) for four traits. All the traits were major QTLs as indicated by the percentage of phenotypic variance (PVE) (≥ 10%) that ranged from 13.5% to 40.3%, therefore, this is very important information which can be used in marker-assisted selection (MAS). The present genomic information generated in this orphan crop, thus, provides the base for genetic improvements by devising molecular breeding strategies.

Keywords: determinate growth habit; dwarfing; horsegram; linkage map; Macrotyloma uniflorum

Received: December 27, 2022; Accepted: March 22, 2023; Prepublished online: May 15, 2023; Published: September 11, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ram Modi M, Katoch M, Thakur N, Gautam M, Choudhary S, Kumar Chahota R. Mapping of genomic regions associated with dwarfing and the determinate growth habit in horsegram (Macrotyloma uniflorum). Czech J. Genet. Plant Breed. 2023;59(4):196-204. doi: 10.17221/119/2022-CJGPB.
Download citation

References

  1. Areshechenkova T., Ganal M.W. (1999): Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 42: 536-544. Go to original source...
  2. Blair M.W., Cortés A.J., Farmer A.D., Huang W., Ambachew D., Penmetsa R.V., Garcia N.C., Assefa T., Cannon S.B. (2018): Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS ONE, 13: e0189597. Go to original source... Go to PubMed...
  3. Chahota R.K., Sharma T.R., Dhiman K.C., Kishore N. (2005): Characterization and evaluation of horsegram (Macrotyloma uniflorum Roxb.) germplasm from Himachal Pradesh. Indian Journal of Plant Genetic Resource, 18: 221-223.
  4. Chahota R.K., Sharma S.K., Sharma T.R., Kumar N., Chandan K. (2013): Induction and characterization of agronomically useful mutants in horsegram (Macrotyloma uniflorum). Indian Journal of Agricultural Sciences, 83: 1105-109.
  5. Chahota R.K., Sharma V., Rana M., Sharma R., Choudhary S., Sharma T.R., Shirasawa K., Hirakawa H., Isobe S.N. (2020): Construction of a framework linkage map and genetic dissection of drought- and yield-related QTLs in horsegram (Macrotyloma uniflorum). Euphytica, 21: 61. Go to original source...
  6. Chahota R.K., Shikha D., Rana M., Sharma V., Nag A., Sharma T.R., Rana J.C., Hirakawa H., Isabe S. (2017): Development and characterization of SSR markers to study genetic diversity and population structure of horsegram germplasm (Macrotyloma uniflorum). Plant Molecular Biology Reporter, 10: 1007. Go to original source...
  7. Chunekar K.C., Pandey G.S., Bhavaprakash N. (1998): Indian MateriaMedica of Sri Bhavamisra (c. 1500-1600 AD). Varanasi, ChaukhambaBharati Academy.
  8. Chung A.M., Staub J.E., Chen J.F. (2006): Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome, 49: 219-229. Go to original source... Go to PubMed...
  9. Doerge R.W., Churchill G.A. (1996): Permutation tests for multiple loci affecting a quantitative character. Genetics, 142: 285-294. Go to original source... Go to PubMed...
  10. Elsik C.G. Williams C.G. (2001): Families of clustered microsatellites in a conifer genome. Molecular Genetics and Genomics, 265: 535-542. Go to original source... Go to PubMed...
  11. Edwards M.D., Stuber C.W., Wendel J.F. (1987): Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 116: 113-125. Go to original source... Go to PubMed...
  12. Grattapaglia D. (2000): Molecular breeding of Eucalyptus: state of the art, applications and technical challenges. In: Jain S.M., Minocha S.C. (eds.): Molecular Markers and Genome Mapping in Woody Plants. Dordrecht, Kluwer Academic Publishers Group: 451-474.
  13. Grisi M.C.M., Blair M.W., Gepts P., Brondani C., Pereira P.A.A., Brondani R.P.V. (2007): Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris L.) population BAT93 × Jalo EEP558. Genetics and Molecular Research, 6: 691-706.
  14. Kaldate R., Rana M., Sharma V., Hirakawa H., Kumar R., Singh G., Chahota R.K., Isobe S.N., Sharma T.R. (2017): Development of genome-wide SSR markers in horsegram and their use for genetic diversity and cross-transferability analysis. Molecular Breeding, 37: 103. Go to original source...
  15. Kong L., Lu S., Wang Y., Fang C., Wang F., Nan H., Su T., Li S., Zhang F., Li X., Zhao X., Yuan X., Liu B., Kong F. (2018): Quantitative trait locus mapping of flowering time and maturity in soybean using next-generation sequencing-based analysis. Frontiers in Plant Science, 9: 995. Go to original source... Go to PubMed...
  16. Mahesh H.B., Prasannakumar M.K., Manasa K.G., Perumal S., Khedikar Y., Kagale S., Soolanayakanahally R.Y., Lohithaswa H.C., Rao A.M., Hittalmani S. (2021): Genome, transcriptome, and germplasm sequencing uncovers functional variation in the warm-season grain legume horsegram Macrotyloma uniflorum (Lam.) Verdc. Frontiers in Plant Science, 12: 758119. Go to original source... Go to PubMed...
  17. Mangin B., Goffinet B., Rebai A. (1994): Constructing confidence intervals for QTL location. Genetics, 138: 1301-1308. Go to original source... Go to PubMed...
  18. McCouch S.R., Doerge R.W. (1995): QTL mapping in rice. Trends in Genetics, 11: 482-487. Go to original source... Go to PubMed...
  19. Mohan M., Nair S., Bhagwat A., Krishna T.G., Yano M., Bhatia C.R., Sasaki T. (1997): Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 3: 87-103. Go to original source...
  20. Murray M.G., Thomson W.F. (1980): Rapid isolation of high molecular weight plant DNA. Nucleic Acid Research, 8: 4321-4325. Go to original source... Go to PubMed...
  21. Neelam D.A. (2007): Identification and quantification of nutraceuticals from bengal gram and horse gram seed coat. [Dissertation for Bachelor of Technology.] Chennai, Department of Biotechnology, Sathyabama University.
  22. Parida S.K., Kalia S.K., Sunita K., Dalal V., Hemaprabha G., Selvi A., Pandit A., Singh A., Gaikwad K., Sharma T.R., Srivastava P.S., Singh N.K., Mohapatra T. (2009): Genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics, 118: 327-338. Go to original source... Go to PubMed...
  23. Perumal S., Sellamuthu M. (2007): The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chemistry, 105: 950-958. Go to original source...
  24. Rajendrakumar P., Biswal A.K., Balachandran S.M., Srinivasarao K., Sundaram R.M. (2007): Simple sequence repeats in organellar genomes of rice: Frequency and distribution in genic and intergenic regions. Bioinformatics, 23: 1-4. Go to original source... Go to PubMed...
  25. Ramsay L., Macaulay M., Cardle L., Morgante M., degli Ivanissevich S., Maestri E., Powell W., Waugh R. (1999): Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant Journal, 17: 415-425. Go to original source... Go to PubMed...
  26. Ramsay L., Macaulay M., Degil Ivanissevich S., MacLean K., Cardle L., Fuller J., Edwards K.J., Tuvesson S., Morgante M., Massari A., Maestri E., Marmiroli N., Sjakste T., Ganal M., Powell W., Waugh R. (2000): A simple sequence repeat based linkage map of barley. Genetics, 156: 1997-2005. Go to original source... Go to PubMed...
  27. Ravishankar K., Vishnu Priya P.S. (2012): In vitro antioxidant activity of ethanolic seed extracts of Macrotyloma uniflorum and Cucumis melo for therapeutic potential. IJRPC, 2: 442-445.
  28. Ribaut J.M., Betran J. (1999): Single large-scale marker assisted selection (SLS-MAS). Molecular Breeding, 5: 531-541. Go to original source...
  29. Reddy A.M., Kumar S.G., Kumari G.J., Thimmanaik S., Sudhakar C. (2005): Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 60: 97-104. Go to original source... Go to PubMed...
  30. Sheetal A., Mahato A.K., Singh S., Mandal P., Bhutani S., Zutta S., Kumawat G., Singh B.P., Chaudhary A.K., Yadav R., Gaikwad K., Sevanthi A.M., Datta S., Raje R.S., Sharma T.R., Singh N.K. (2017): A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.) PLoS ONE, 12: e0179747. Go to original source... Go to PubMed...
  31. Somta P., Chen J., Yundaeng C., Yuan X., Yimram T., Tomooka N., Chen X. (2019): Development of an SNP-based high-density linkage map and QTL analysis for bruchid (Callosobruchus maculatus F.) resistance in black gram (Vigna mungo (L.) Hepper). Scientific Reports, 9: 1-9. Go to original source... Go to PubMed...
  32. Tautz D. (1993): Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In: Pena S.D.J., Chakraborty R., Epplen J.T., Jeffreys A.J. (eds.): DNA Fingerprinting: State of the Science. Basel, Birkhaiiser Verlag: 21-28. Go to original source...
  33. Tewodros M., Zelalem B. (2016): Advances in quantitative trait loci, mapping and importance of markers assisted selection in plant breeding research. International Journal of Plant Breeding and Genetics, 10: 58-68. Go to original source...
  34. van Ooijen J.W. (2006): JoinMap, Software for the Calculation of Genetic Linkage Maps. Version 4. Wageningen, Kyazma BV.
  35. Wang S., Basten C.J., Zeng Z.B. (2012): Windows QTL Cartographer 2.5. Raleigh, Department of Statistics, North Carolina State University.
  36. Zane L., Bargelloni L., Patarnello T. (2002): Strategies for microsatellite isolation: A review. Molecular Ecology, 11: 1-16. Go to original source... Go to PubMed...
  37. Zeng Z.B. (1993): Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceeding of National Academy of Sciences of the USA, 90: 10972-10976. Go to original source... Go to PubMed...
  38. Zeng Z.B. (1994): Precision mapping of quantitative trait loci. Genetics, 136: 1457-1468. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.