Czech J. Genet. Plant Breed., 2022, 58(3):162-165 | DOI: 10.17221/107/2021-CJGPB
Mendelian inheritance of introrse orientated anthers in Brassica rapaOriginal Paper
- 1 Crop Research Institute, Prague-Ruzyně, Czech Republic
- 2 Saskatoon Research Centre, Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, Canada
The inheritance of anther orientation of 154 individuals from two B1 populations of Brassica rapa (syn. Brassica campestris) was evaluated under controlled conditions in a greenhouse. The anther orientation was evaluated visually at the time of fully open flowers. The observed extrorse:introrse ratios were 1 : 1 in R-o-18 × (R-o-18 × RM29) population and 3 : 1 in R-o-18 × (R-o-18 × R c-50) population. It was concluded that this trait is controlled by two duplicated pairs of genes (A1, A2) for extrorse anthers, either of which can produce extrorse anthers when a single dominant allele is present. Introrse anthers result when all alleles at both loci are recessive.
Keywords: anther orientation; Brassica campestris; chi-square test; Chinese cabbage; mating system; turnip rape; yellow sarson
Published: June 13, 2022 Show citation
References
- Busch J.W. (2005): The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). American Journal of Botany, 92: 1503-1512.
Go to original source...
Go to PubMed...
- Havel J. (1994): Use of self-incompatibility in hybrid breeding of winter oilseed rape. [PhD. Thesis.] Prague, Czech University of Agriculture. (in Czech)
- Lloyd D.G. (1965): Evolution of self-compatibility and racial differentiation in Leavenworthia (Cruciferae). Contributions from the Gray Herbarium of Harvard University, 195: 3-134.
Go to original source...
- Lyons E.E., Antonovics J. (1991): Breeding system evolution in Leavenworthia: Breeding system variation and reproductive success in natural populations of Leavenworthia crassa (Cruciferae). American Journal of Botany, 78: 270-287.
Go to original source...
- Madawala J.S. (2020): The genetic basis of stamen orientation - An outcrossing mechanism in the Brassiceae. [Master of Philosophy Thesis.] Adelaide, University of Adelaide.
- Mohammad A., Sikka S.M., Aziz M.A. (1942): Inheritance of seed colour in some oleiferous Brassicaceae. Indian Journal of Genetics and Plant Breeding, 2: 112-127.
- Mun J.-H., Kwon S.-J., Yang T.-J., Seol Y.-J., Jin M., Kim J. A., Lim M.-H., Kim J.S., Baek S., Choi B.-S., Yu H.-J., Kim D.-S., Kim N., Lim K.-B., Lee S.-I., Hahn J.-H., Lim Y.P., Bancroft I., Park B.-S. (2009): Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biology, 10: R111.
Go to original source...
Go to PubMed...
- Paterson D.D. (1939): Statistical Technique in Agricultural Research. New York, London, McGraw-Hill Book Company, Inc.
- Riggs T.J. (1988): Breeding F1 varieties of vegetables. Journal of Horticultural Science, 63: 369-382.
Go to original source...
- Rollins R.C. (1963): The evolution and systematics of Leavenworthia (Cruciferae). Contributions from the Gray Herbarium of Harvard University, 192: 3-98.
Go to original source...
- Salisbury P.A., Fripp Y.J., Gurung A.M., Williams W.M. (2017): Is floral structure a reliable indicator of breeding system in the Brassicaceae? PLoS ONE, 12: e0174176.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.