Czech J. Genet. Plant Breed., 2021, 57(4):125-139 | DOI: 10.17221/27/2021-CJGPB

Genetic relationships among Cucurbita pepo ornamental gourds based on EST-SSR markersOriginal Paper

Weiqi Wang ORCID...1,2, Yuzi Shi1, Ying Liu3, Chenggang Xiang4, Tingzhen Sun1, Meng Zhang1, Qin Shu1, Xiyan Qiu1, Kailiang Bo1, Ying Duan ORCID...*,1, Changlin Wang ORCID...*,1
1 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
2 College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
3 Harbin Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. China
4 Honghe University, Honghe, Yunnan, P.R. China

The ornamental gourd Cucurbita pepo L. is a ubiquitous crop native to North America, exhibiting highly diverse fruit characteristics. Studying the genetic diversity of ornamental gourds can help identify and evaluate the curated germplasm resources, understand the phylogenetic relationships among them, and highlight ways in which the germplasm resources can be used to address gaps in the understanding. In this study, a set of 85 of 323 previously identified polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) genetic markers were selected to evaluate the genetic relationships among 47 C. pepo accessions and one C. foetidissima accession. This collection consisted of accessions from the subspecies pepo, texana, and the hybrid texana × pepo. Our analyses yielded a total of 271 alleles, with an average of 3.2 alleles per genetic locus. The dendrogram construction, principal coordinate analyses, and genetic value calculation revealed several robust subclusters in the texana subspecies accessions. From these results, we propose five new distinct morphotypes based on our construction of a concise SSR fingerprint. Moreover, our study confirms that the fruit shape similarity among accessions is a fair reflection of genetic relatedness.

Keywords: genetic diversity; morphotypes; ssp. texana; SSR fingerprinting

Published: September 14, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang W, Shi Y, Liu Y, Xiang C, Sun T, Zhang M, et al.. Genetic relationships among Cucurbita pepo ornamental gourds based on EST-SSR markers. Czech J. Genet. Plant Breed. 2021;57(4):125-139. doi: 10.17221/27/2021-CJGPB.
Download citation

Supplementary files:

Download fileWang Table S1.xlsx

File size: 19.08 kB

Download fileWang Table S2.xlsx

File size: 11.45 kB

Download fileWang_ESM.pdf

File size: 259.87 kB

References

  1. Andres T.C. (1987): Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genetics Cooperative Report, 10: 69-71.
  2. Blanca J., Cañizares J., Roig C., Ziarsolo P., Nuez F., Picó B. (2011): Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12: 104. Go to original source... Go to PubMed...
  3. Botstein D., White R.L., Skolnick M., Davis R.W. (1980): Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32: 314.
  4. Castellanos-Morales G., Ruiz-Mondragón K.Y., HernándezRosales H.S., Sánchez-de la Vega G., Gámez N., AguirrePlanter E., Montes-Hernández S., Lira-Saade R., Eguiarte, L.E. (2019): Tracing back the origin of pumpkins (Cucurbita pepo ssp. pepo L.) in Mexico. Proceedings of the Royal Society B, 286: 20191440. Go to original source... Go to PubMed...
  5. Chomicki G., Schaefer H., Renner S.S. (2020): Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist, 226: 1240-1255. Go to original source... Go to PubMed...
  6. Decker D.S. (1988): Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Economic Botany, 42: 4-15. Go to original source...
  7. Dice L.R. (1945): Measures of the amount of ecologic association between species. Ecology, 26: 297-302. Go to original source...
  8. Doyle J. (1991): DNA protocols for plants. In: Hewitt G.M., Johnston A.W.B., Young J.P.W. (eds.): Molecular Techniques in Taxonomy. 1st Ed. Berlin, Springer: 283-293. Go to original source...
  9. Emerson R.A. (1910): The inheritance of sizes and shapes in plants. The American Naturalist, 44: 739-746. Go to original source...
  10. Felsenstein J. (1985): Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783-791. Go to original source... Go to PubMed...
  11. Ferriol M., Pico B., Nuez F. (2003): Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 107: 271-282. Go to original source... Go to PubMed...
  12. Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V.M., Hénaff E., Câmara F., Cozzuto L., Lowy E., Alioto T. (2012): The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109: 11872-11877. Go to original source... Go to PubMed...
  13. Gong L., Stift G., Kofler R., Pachner M., Lelley T. (2008): Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theoretical and Applied Genetics, 117: 37-48. Go to original source... Go to PubMed...
  14. Gong L., Paris H.S., Nee M.H., Stift G., Pachner M., Vollmann J., Lelley T. (2012): Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theoretical and Applied Genetics, 124: 875-891. Go to original source... Go to PubMed...
  15. Gong L., Paris H.S., Stift G., Pachner M., Vollmann J., Lelley T. (2013): Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genetic Resources and Crop Evolution, 60: 1531-1546. Go to original source...
  16. Guo S., Zhang J., Sun H., Salse J., Lucas W.J., Zhang H., Zheng Y., Mao L., Ren Y., Wang Z., Min J. (2013): The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 45: 51-58. Go to original source... Go to PubMed...
  17. Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., Lucas W.J., Wang X., Xie B., Ni P., Ren Y. (2009): The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41: 1275-1281. Go to original source... Go to PubMed...
  18. Katzir N., Tadmor Y., Tzuri G., Leshzeshen E., MozesDaube N., Danin-Poleg Y., Paris H.S. (2000): Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. In: Katzir N., Paris H.S. (eds.): VII Eucarpia Meeting on Cucurbit Genetics and Breeding 510. 1st Ed. Ma'ale Ha Hamisha, ISHS: 433-440. Go to original source...
  19. Ka¼miñska K., Sobieszekzmi K., Targoñska-Karasek M., Korzeniewska A., Niemirowicz-Szczytt K., Bartoszewski G. (2017): Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic Cucurbita-conserved SSR markers. Scientia Horticulturae, 219: 37-44. Go to original source...
  20. Kong Q., Chen J., Liu Y., Ma Y., Liu P., Wu S., Huang Y., Bie Z. (2014): Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers. Scientia Horticulturae, 175: 150-155. Go to original source...
  21. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018): MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547-1549. Go to original source... Go to PubMed...
  22. Montero-Pau J., Blanca J., Bombarely A., Ziarsolo P., Esteras C., Martí-Gómez C., Ferriol M., Gómez P., Jamilena M., Mueller L., Picó B. (2018): De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnology Journal, 16: 1161-1171. Go to original source... Go to PubMed...
  23. Nei M. (1978a): The theory of genetic distance and evolution of human races. Japanese Journal of Human Genetics, 23: 341-369. Go to original source... Go to PubMed...
  24. Nei M. (1978b): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590. Go to original source... Go to PubMed...
  25. Nei M., Li W.H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76: 5269-5273. Go to original source... Go to PubMed...
  26. Ntuli N.R., Tongoona P.B., Zobolo A.M. (2015): Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers. Scientia Horticulturae, 189: 192-200. Go to original source...
  27. Pan Y., Wang Y., McGregor C., Liu S., Luan F., Gao M., Weng Y. (2020): Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 133: 1-21. Go to original source... Go to PubMed...
  28. Paris H.S. (1986): A proposed subspecific classification for Cucurbita pepo. Phytologia, 61: 133-138.
  29. Paris H.S. (2000): Paintings (1769-1774) by A.N. Duchesne and the history of Cucurbita pepo. Annals of Botany, 85: 815-830. Go to original source...
  30. Paris H.S. (2001): History of the cultivar-groups of Cucurbita pepo. Horticultural Reviews, 25: 71-170. Go to original source...
  31. Paris H.S. (2016): Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. Euphytica, 208: 415-438. Go to original source...
  32. Paris H.S., Yonash N., Portnoy V., Mozes-Daube N., Tzuri G., Katzir N. (2003): Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics, 106: 971-978. Go to original source... Go to PubMed...
  33. Paris H.S., Hanan A., Baumkoler F., Lebeda A. (2004): Assortment of five gene loci in Cucurbita pepo. In: Lebeda A., Paris H.S. (eds.): Proceedings of Cucurbitaceae. 1 st Ed. Olomouc, Palacky University in Olomouc: 389-394.
  34. Paris H.S., Lebeda A., Køistkova E., Andres T.C., Nee M.H. (2012): Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Economic Botany, 66: 71-90. Go to original source...
  35. Qi J., Liu X., Shen D., Miao H., Xie B., Li X., Zeng P., Wang S., Shang Y., Gu X., Du Y. (2013): A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45: 1510. Go to original source... Go to PubMed...
  36. Radwan S.A.A. (2014): Molecular discrimination and genetic relationships between some cultivars of Cucurbita pepo ssp. pepo using random amplification of polymorphic DNA (RAPD) analysis. African Journal of Biotechnology, 13: 1202-1209. Go to original source...
  37. Robinson R.W., Decker-Walters D.S. (1997): Cucurbits. Wallingford, Cab International.
  38. Rohlf F.J. (2000): NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.10e. New York, Exeter Publications.
  39. Sanjur O.I., Piperno D.R., Andres T.C., Wessel-Beaver L. (2002): Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences, 99: 535-450. Go to original source... Go to PubMed...
  40. Singh N., Choudhury D.R., Singh A.K., Kumar S., Srinivasan K., Tyagi R.K., Singh N.K., Singh R. (2013): Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE, 8: e84136. Go to original source... Go to PubMed...
  41. Sinnott E.W. (1935): Evidence for the existence of genes controlling shape. Genetics, 20: 12-21. Go to original source... Go to PubMed...
  42. Sinnott E.W., Kaiser S. (1934): Two types of genetic control over the development of shape. Bulletin of the Torrey Botanical Club, 61: 1-7. Go to original source...
  43. Sneath P.H., Sokal R.R. (1973): Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco, W.H. Freeman and Company.
  44. Stecher G., Tamura K., Kumar S. (2020): Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution, 37: 1237-1239. Go to original source... Go to PubMed...
  45. Sun H., Wu S., Zhang G., Jiao C., Guo S., Ren Y., Zhang J., Zhang H., Gong G., Jia Z., Zhang F. (2017): Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular Plant, 10: 1293-1306. Go to original source... Go to PubMed...
  46. Trumbull J.H. (1876): Vegetables cultivated by the American Indians. I. Bulletin of the Torrey Botanical Club, 613: 69-71. Go to original source...
  47. Varshney R.K., Chabane K., Hendre P.S., Aggarwal R.K., Graner A. (2007): Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science, 173: 638-649. Go to original source...
  48. Wehner T.C., Naegele R.P., Myers J.R., Narinder P.S., Crosby K. (2020): Cucurbits. 2nd Ed. Wallingford, CABI: 20-21. Go to original source...
  49. Whitaker T.W. (1947): American origin of the cultivated cucurbits. Annals of the Missouri Botanical Garden, 34: 101-111. Go to original source...
  50. Wilson H.D., Doebley J., Duvall M. (1992): Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theoretical and Applied Genetics, 84: 859-865. Go to original source... Go to PubMed...
  51. Xanthopoulou A., Ganopoulos I., Kalivas A., NianiouObeidat I., Ralli P., Moysiadis T., Tsaftaris A., Madesis P. (2015): Comparative analysis of genetic diversity in Greek Genebank collection of summer squash (Cucurbita pepo) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Australian Journal of Crop Science, 9: 14-21.
  52. Xanthopoulou A., Montero-Pau J., Mellidou I., Kissoudis C., Blanca J., Picó B., Tsaballa A., Tsaliki E., Dalakouras A., Paris H.S., Ganopoulou M. (2019): Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research, 6: 1-7. Go to original source... Go to PubMed...
  53. Xiang C., Duan Y., Li H., Ma W., Huang S., Sui X., Zhang Z., Wang C. (2018): A high-density EST-SSR-based genetic map and QTL analysis of dwarf trait in Cucurbita pepo L. International Journal of Molecular Sciences, 19: 3140. Go to original source... Go to PubMed...
  54. Yang L., Koo D.H., Li Y., Zhang X., Luan F., Havey M.J., Jiang J., Weng Y. (2012): Chromosome rearrangements during domestication of cucumber as revealed by highdensity genetic mapping and draft genome assembly. The Plant Journal, 71: 895-906. Go to original source... Go to PubMed...
  55. Yeh F.C., Boyle T., Rongcai Y., Ye Z., Xian J. (1999): POPGENE Version 1.31. A Microsoft window-based freeware for population genetic analysis. Available at https://sites.ualberta.ca/~fyeh/popgene.pdf/.
  56. Zheng Y.H., Alverson A.J., Wang Q.F., Palmer J.D. (2013): Chloroplast phylogeny of Cucurbita: evolution of the domesticated and wild species. Journal of Systematics and Evolution, 51: 326-334. Go to original source...
  57. Zheng Y., Wu S., Bai Y., Sun H., Jiao C., Guo S., Zhao K., Blanca J., Zhang Z., Huang S., Xu Y., Weng Y., Mazourek M. K., Reddy U., Ando K., McCreight J.D., Schaffer A.A., Burger J., Tadmor Y., Katzir N., Tang X., Liu Y., Giovannoni J.J., Ling K.S., Wechter W.P., Levi A., GarciaMas J., Grumet R., Fei Z. (2019): Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 47: 1128-1136. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.