Czech J. Genet. Plant Breed., 2021, 57(1):36-42 | DOI: 10.17221/13/2020-CJGPB
Changes in the expression of CrFTA, the Catharanthus roseus farnesyltransferase α-subunit gene, in response to a Candidatus Liberibacter asiaticus infectionOriginal Paper
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, P.R. China
The farnesyltransferase α-subunit (FTA) may be involved in the regulation of defence responses against pathogens in plants. In this study, this gene was amplified from Catharanthus roseus (CrFTA gene). The cDNA was found to be 1 403 bp long, and encodes a putative protein of 331 amino acids that contains a conserved PPTA motif. The phylogenetic analysis showed that the sequence of CrFTA is the most similar to that from Coffea canephora. The qRT-PCR assays indicated that CrFTA is expressed in the leaves, stems, and roots. During a Candidatus Liberibacter asiaticus (Ca. L. asiaticus) infection, the CrFTA expression levels significantly increased and reached 18-fold that measured in the control group, after which its expression decreased gradually from 22 days after top-grafting (DAT) to the end of the experiment. Spray application of Manumycin A (ManuA), a specific inhibitor of farnesyltransferase, on the leaves of C. roseus plants caused a significant decrease in the CrFTA expression and a significant increase in the Ca. L. asiaticus positivity percentage after top-grafting with the Ca. L. asiaticus-infected shoots compared with the groups not treated with ManuA. Furthermore, ABA had no significant effect on the relative expression of CrFTA and the number of Ca. L. asiaticus-positive plants. These results suggest that CrFTA most likely plays a role in mediating the tolerance to a Ca. L. asiaticus infection in C. roseus.
Keywords: Ca. L. asiaticus; gene expression; Madagascar periwinkle; Manumycin A
Published: January 7, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Cao F.Y., Yoshioka K., Desveaux D. (2011): The roles of ABA in plant-pathogen interactions. Journal of Plant Research, 124: 489-499.
Go to original source...
Go to PubMed...
- Charng W.L., Yamamoto S., Jaiswal M., Bayat V., Xiong B., Zhang K., Sandoval H., David G., Gibbs S., Lu H.C., Chen K., Giagtzoglou N., Bellen H.J. (2014): Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biology, 12: e1001777.
Go to original source...
Go to PubMed...
- Cutler S., Ghassemian M., Bonetta D., Cooney S., McCourt P. (1996): A protein farnesyltransferase involved in abscisic acid signal transduction in Arabidopsis, Science, 273: 1239-1241.
Go to original source...
Go to PubMed...
- Deng X., Gao Y., Chen J., Pu X., Kong W., Li H. (2012): Current situation of 'Candidatus Liberibacter asiaticus' in Guangdong, China, where citrus Huanglongbing was first described. Journal of Integrative Agriculture, 11: 424-429.
Go to original source...
- Ding F., Duan Y., Paul C., Brlansky R.H., Hartung J.S. (2015): Localization and distribution of 'Candidatus Liberibacter asiaticus' in citrus and periwinkle by direct tissue blot immuno assay with an anti-OmpA polyclonal antibody. PLoS One, 10: e0123939.
Go to original source...
Go to PubMed...
- Goritschnig S., Weihmann T., Zhang Y., Fobert P., McCourt P., Li X. (2008): A novel role for protein farnesylation in plant innate immunity. Plant Physiology, 148: 348-357.
Go to original source...
Go to PubMed...
- Islam M.S., Glynn J.M., Bai Y., Duan Y.P., Coletta-Filho H.D., Kuruba G., Civerolo E.L., Lin H. (2012): Multilocus microsatellite analysis of 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing worldwide. BMC Microbiology, 12: 39.
Go to original source...
Go to PubMed...
- Izard T. (2002): The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme's catalytic mechanism. Journal of Molecular Biology, 315: 487-495.
Go to original source...
Go to PubMed...
- Jiang C.J., Shimono M., Sugano S., Kojima M., Yazawa K., Yoshida R., Inoue H., Hayashi N., Sakakibara H., Takatsuji H. (2010): Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Molecular Plant-Microbe Interactions, 23: 791-798.
Go to original source...
Go to PubMed...
- Li Y., Xu M.R., Dai Z.H., Deng X.L. (2018): Distribution pattern and titer of 'Candidatus Liberibacter asiaticus' in periwinkle (Catharanthus roseus). Journal of Integrative Agriculture, 17: 2501-2508.
Go to original source...
- Li Y., Yu Q.H., Wang B.F., Chen L.T. (2019): Differential expression of Isochorismate synthase in Catharanthus roseus during 'Candidatus Liberibacter asiaticus' infection. Tropical Plant Pathology, 44: 363-370.
Go to original source...
- Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 25: 402-408.
Go to original source...
Go to PubMed...
- Nambara E., McCourt P. (1999): Protein farnesylation in plants: a greasy tale. Current Opinion in Plant Biology, 2: 388-392.
Go to original source...
Go to PubMed...
- Running M.P., Lavy M., Sternberg H., Galichet A., Gruissem W., Hake S., Ori N., Yalovsky S. (2004): Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 101: 7815-7820.
Go to original source...
Go to PubMed...
- Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011): MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731-2739.
Go to original source...
Go to PubMed...
- Wang N., Trivedi P. (2013): Citrus huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology, 103: 652-665.
Go to original source...
Go to PubMed...
- Wang Y., Beaith M., Chalifoux M., Ying J., Uchacz T., Sarvas C., Griffiths R., Kuzma M., Wan J., Huang Y. (2009): Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Molecular Plant, 2: 191-200.
Go to original source...
Go to PubMed...
- Ying W., Sepp-Lorenzino L., Cai K., Coleman P.S. (1994): Photoaffinity-labeling peptide substrates for farnesylprotein transferase and the intersubunit location of the active site. Journal of Biological Chemistry, 269: 470-477.
Go to original source...
- Zhang M., Duan Y., Zhou L., Turechek W.W., Stover E., Powell C.A. (2010): Screening molecules for control of citrus Huanglongbing using an optimized regeneration system for 'Candidatus Liberibacter asiaticus'-infected Periwinkle (Catharanthus roseus) Cuttings. Phytopathology, 100: 239-245.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.