Czech J. Genet. Plant Breed., 2019, 55(2):45-54 | DOI: 10.17221/54/2018-CJGPB

The role of ZIP proteins in zinc assimilation and distribution in plants: current challengesReview

Juan Daniel Lira-Morales, Nancy Varela-Bojórquez, Magaly Berenice Montoya-Rojo, J. Adriana Sañudo-Barajas*
Centro de Investigación en Alimentación y Desarrollo A.C., Culiacán, Sinaloa, México

Soils with mineral deficiencies lead to nutritional imbalance in crops worldwide. Zinc (Zn) is a micronutrient that is fundamental for plant growth and development, being essential for the proper functioning of a range of enzymes and transcription factors. Zn transporters tightly regulate Zn homeostasis. Plants contain a large number of Zn-responsive genes that are specifically expressed under Zn deficiency to ensure the coordination of assimilatory pathways and meet the physiological requirements. This review brings together a range of studies that have been undertaken to investigate the effects of Zn status on the regulatory mechanisms involved in plant mineral nutrition. The ZIP (ZRT, IRT-like Protein) family is especially implicated in Zn transport and in the maintenance of cellular Zn homeostasis. Regulation of expression in relation to plant tissue, mineral concentration, and species has been determined for several ZIP family members. In the omic era, genomic and proteomic approaches have facilitated a rapid increase in our understanding of the roles of ZIP family members and their regulation, though significant knowledge gaps remain. A comprehensive understanding of ZIP proteins could lead to many potential molecular applications to improve crop management and food quality.

Keywords: homeostasis; IRT-like protein family; transcription; zinc-responsive genes; zinc transporters

Published: June 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lira-Morales JD, Varela-Bojórquez N, Montoya-Rojo MB, Sañudo-Barajas JA. The role of ZIP proteins in zinc assimilation and distribution in plants: current challenges. Czech J. Genet. Plant Breed. 2019;55(2):45-54. doi: 10.17221/54/2018-CJGPB.
Download citation

References

  1. Assunção A.G.L., Martins P.D.C., De Folter S., Vooijs R., Schat H., Aarts M.G.M. (2001): Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 24: 217-226. Go to original source...
  2. Assunção A.G.L., Herrero E., Lin Y.-F., Huettel B., Talukdar S., Smaczniak C., Immink R.G.H., van Eldik M., Fiers M., Schat H., Aarts M.G.M. (2010): Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 107: 10296-10301. Go to original source... Go to PubMed...
  3. Assunção A.G., Persson D.P., Husted S., Schjorring J.K., Alexander R.D., Aarts M.G. (2013): Model of how plants sense zinc deficiency. Metallomics, 5: 1110-1116. Go to original source... Go to PubMed...
  4. Astudillo C., Fernandez A.C., Blair M.W., Cichy K.A. (2013): The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 4: 286. Go to original source... Go to PubMed...
  5. Barberon M., Geldner N. (2014): Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiology, 166: 528-537. Go to original source... Go to PubMed...
  6. Bashir K., Ishimaru Y., Nishizawa N.K. (2012): Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361: 189-201. Go to original source...
  7. Becher M., Talke I.N., Krall L., Krämer U. (2004): Crossspecies microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal, 37: 251-268. Go to original source... Go to PubMed...
  8. Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. (2007): Zinc in plants. New Phytologist, 173: 677-702. Go to original source... Go to PubMed...
  9. Bughio N., Yamaguchi H., Nishizawa N.K., Nakanishi H., Mori S. (2002): Cloning an iron-regulated metal transporter from rice. Journal of Experimental Botany, 53: 1677-1682. Go to original source... Go to PubMed...
  10. Burleigh S.H., Kristensen B.K., Bechmann I.E. (2003): A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Molecular Biology, 52: 1077-1088. Go to original source... Go to PubMed...
  11. Chen W.R., Feng Y., Chao Y.E. (2008): Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 55: 400-409. Go to original source...
  12. Deinlein U., Weber M., Schmidt H., Rensch S., Trampczynska A., Hansen T.H., Husted S., Schjoerring J.K., Talke I.N., Krämer U., Clemens S. (2012): Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell, 24: 708-723. Go to original source... Go to PubMed...
  13. Desbrosses-Fonrouge A.-G., Voigt K., Schröder A., Arrivault S., Thomine S., Krämer U. (2005): Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Letters, 579: 4165-4174. Go to original source... Go to PubMed...
  14. Durmaz E., Coruh C., Dinler G., Grusak M.A., Peleg Z., Saranga Y., Fahima T., Yazici A., Ozturk L., Cakmak I., Budak H. (2010): Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild Emmer wheat. Plant Molecular Biology Reporter, 29: 582-596. Go to original source...
  15. Eckhardt U., Mas Marques A., Buckhout T.J. (2001): Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology, 45: 437-448. Go to original source... Go to PubMed...
  16. Eide D., Broderius M., Fett J., Guerinot M.L. (1996): A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences, 93: 5624-5628. Go to original source... Go to PubMed...
  17. Gainza-Cortes F., Perez-Diaz R., Perez-Castro R., Tapia J., Casaretto J.A., Gonzalez S., Peña-Cortés H., Ruiz-Lara S., González E. (2012): Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biology, 12: 111. Go to original source... Go to PubMed...
  18. Grotz N., Fox T., Connoly E., Park W., Guerinot M., Eide D. (1998): Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, 95: 7220-7224. Go to original source... Go to PubMed...
  19. Guerinot M. (2000): The ZIP family of metal transporters. Biochimica et Biophysica Acta, 1465: 190-198. Go to original source... Go to PubMed...
  20. Hajiboland R., Amirazad F. (2010): Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant, Soil and Environment, 56: 209-217. Go to original source...
  21. Henriques R., Jásik J., Klein M., Martinoia E., Feller U., Schell J., Pais M.S., Koncz C. (2002): Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 50: 587-597. Go to original source... Go to PubMed...
  22. Ishimaru Y., Suzuki M., Kobayashi T., Takahashi M., Nakanishi H., Mori S., Nishizawa N.K. (2005): OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56: 3207-3214. Go to original source... Go to PubMed...
  23. Ishimaru Y., Suzuki M., Tsukamoto T., Suzuki K., Nakazono M., Kobayashi T., et al. (2006): Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant Journal, 45: 335-346. Go to original source... Go to PubMed...
  24. Jain A., Sinilal B., Dhandapani G., Meagher R.B., Sahi S.V. (2013): Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Environmental Science & Technology, 47: 5327-5335. Go to original source... Go to PubMed...
  25. Jakoby M., Weisshaar B., Droge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F. (2002): bZIP transcription factors in Arabidopsis. Trends in Plant Sciences, 7: 106-111. Go to original source... Go to PubMed...
  26. Kendziorek M., Barabasz A., Rudzka J., Tracz K., Mills R.F., Williams L.E., Antosiewicz D.M. (2014): Approach to engineer tomato by expression of AtHMA4 to enhance Zn in the aerial parts. Journal of Plant Physiology, 171: 1413-1422. Go to original source... Go to PubMed...
  27. Kosesakal T., Unal M. (2009): Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. IUFS Journal of Biology, 68: 113-120.
  28. Lan H.-X., Wang Z.-F., Wang Q.-H., Wang M.-M., Bao Y.-M., Huang J., Zhang H.S. (2013): Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Molecular Biology Reports, 40: 1201-1210. Go to original source... Go to PubMed...
  29. Lasswell J., Rogg L.E., Nelson D.C., Rongey C., Bartel B. (2000): Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell, 12: 2395-2408. Go to original source... Go to PubMed...
  30. Lee S., Jeong H.J., Kim S.A., Lee J., Guerinot M.L., An G. (2010): OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 73: 507-517. Go to original source... Go to PubMed...
  31. Li S., Zhou X., Huang Y., Zhu L., Zhang S., Zhao Y., Guo J., Chen J., Chen R. (2013): Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13: 114. Go to original source... Go to PubMed...
  32. Lin Y.F., Liang H.M., Yang S.Y., Boch A., Clemens S., Chen C.C., Wu J.F., Huang J.L., Yeh K.C. (2009): Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182: 392-404. Go to original source... Go to PubMed...
  33. López-Millán A.-F., Ellis D., Grusak M. (2004): Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Molecular Biology, 54: 583-596. Go to original source... Go to PubMed...
  34. Milner M.J., Craft E., Yamaji N., Koyama E., Ma J.F., Kochian L.V. (2012): Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytologist, 195: 113-123. Go to original source... Go to PubMed...
  35. Milner M.J., Seamon J., Craft E., Kochian L.V. (2013): Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64: 369-381. Go to original source... Go to PubMed...
  36. Mizuno T., Usui K., Horie K., Nosaka S., Mizuno N., Obata H. (2005): Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiology and Biochemistry, 43: 793-801. Go to original source... Go to PubMed...
  37. Moreau S., Thomson R.M., Kaiser B.N., Trevaskis B., Guerinot M.L., Udvardi M.K., Puppo A., Day D.A. (2002): GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry, 277: 4738-4746. Go to original source... Go to PubMed...
  38. Morel M., Crouzet J., Gravot A., Auroy P., Leonhardt N., Vavasseur A., Richaud P. (2009): AtHMA3, a P(1B)-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 149: 894-904. Go to original source... Go to PubMed...
  39. Nishida S., Tsuzuki C., Kato A., Aisu A., Yoshida J., Mizuno T. (2011): AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant & Cell Physiology, 52: 1433-1442. Go to original source... Go to PubMed...
  40. Olsen L., Palmgren M. (2014): Many rivers to cross: the journey of zinc from soil to seed. Frontiers in Plant Science, 5: 1-6. doi: 10.3389/fpls.2014.00030. Go to original source... Go to PubMed...
  41. Oomen R.J.F.J., Wu J., Lelièvre F., Blanchet S., Richaud P., Barbier-Brygoo H., Aarts M.G., Thomine S. (2009): Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytologist, 181: 637-650. Go to original source... Go to PubMed...
  42. Pandey N., Pathak G.C., Singh A.K., Sharma C.P. (2002): Enzymic changes in response to zinc nutrition. Journal of Plant Physiology, 159: 1151-1153. Go to original source...
  43. Pavithra G.J., Mahesh S., Parvathi M.S., Basavarajeshwari R.M., Nataraja K.N., Shankar A.G. (2016): Comparative growth responses and transcript profiling of zinc transporters in two tomato varieties under different zinc treatments. Indian Journal of Plant Physiology, 21: 208-212. Go to original source...
  44. Pedas P., Ytting C.K., Fuglsang A.T., Jahn T.P., Schjoerring J.K., Husted S. (2008): Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiology, 148: 455-466. Go to original source... Go to PubMed...
  45. Pedas P., Schjoerring J.K., Husted S. (2009): Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 47: 377-383. Go to original source... Go to PubMed...
  46. Pence N.S., Larsen P.B., Ebbs S.D., Letham D.L.D., Lasat M.M., Garvin D.F., Eide D., Kochain L.V. (2000): The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97: 4956-4960. Go to original source... Go to PubMed...
  47. Potocki S., Valensin D., Camponeschi F., Kozlowski H. (2013): The extracellular loop of IRT1 ZIP protein - the chosen one for zinc? Journal of Inorganic Biochemistry, 127: 246-252. Go to original source... Go to PubMed...
  48. Prask J.A., Plocke D.J. (1971): A role for zinc in the structural integrity of the cytoplasmic ribosomes of Euglena gacilis. Plant Physiology, 48: 150-155. Go to original source... Go to PubMed...
  49. Ramesh S.A. (2003): Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133: 126-134. Go to original source... Go to PubMed...
  50. Sasaki H., Hirose T., Wanatabe Y., Ohsugi R. (1998): Carbonic anhydrase activity and co2-transfer resistance in zn-deficient rice leaves. Plant Physiology and Biochemistry, 118: 929-934. Go to original source... Go to PubMed...
  51. Shanmugam V., Lo J.C., Yeh K.C. (2013): Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Frontiers in Plant Science, 4: 281. Go to original source... Go to PubMed...
  52. Siemianowski O., Barabasz A., Weremczuk A., Ruszczyñska A., Bulska E.W.A., Williams L.E., Antosiewicz D.M. (2013): Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels. Plant, Cell & Environment, 36: 1093-1104. Go to original source... Go to PubMed...
  53. Sinclair S.A., Kramer U. (2012): The zinc homeostasis network of land plants. Biochimica et Biophysica Acta, 1823: 1553-1567. Go to original source... Go to PubMed...
  54. Sivasubramanian R., Mukhi N., Kaur J. (2015): Arabidopsis thaliana: a model for plant research. In: Bahadur B., Venkat Rajam M., Sahijram L., Krishnamurthy V.K. (eds.): Plant Biology and Biotechnology, Volume II, Plant Genomics and Biotechnology. New Delhi, Springer: 1-26. Go to original source...
  55. Song W.-Y., Choi K.S., Kim D.Y., Geisler M., Park J., Vincenzetti V., Schellenberg M., Kim S.H., Lim Y.P., Noh E.W., Lee Y., Martinoia E. (2010): Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and longdistance zinc transport. Plant Cell, 22: 2237-2252. Go to original source... Go to PubMed...
  56. Talke I.N., Hanikenne M., Krämer U. (2006): Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology, 142: 148-167. Go to original source... Go to PubMed...
  57. Tiong J., McDonald G., Genc Y., Shirley N., Langridge P., Huang C.Y. (2015): Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist, 207: 1097-1109. Go to original source... Go to PubMed...
  58. Uraguchi S., Kato Y., Hanaoka H., Miwa K., Fijiwara T. (2014): Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Frontiers in Plant Science, 5: 1-7. Go to original source... Go to PubMed...
  59. Vatansever R., Özyigit I.I., Filiz E. (2016): Comparative and phylogenetic analysis of zinc transporter genes/proteins in plants. Turkish Journal of Biology, 40: 600-611. Go to original source...
  60. Verret F., Gravot A., Auroy P., Leonhardt N., David P., Nussaume L., Vavasseur A, Richaud P. (2004): Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 576: 306-312. Go to original source... Go to PubMed...
  61. Vert G., Briat J.F., Curie C. (2001): Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant Journal, 26: 181-189. Go to original source... Go to PubMed...
  62. Wang M., Xu Q., Yu J., Yuan M. (2010): The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. Plant Molecular Biology, 73: 467-479. Go to original source... Go to PubMed...
  63. Wang Y., Zhang W.-Z., Song L.-F., Zou J.-J., Su Z., Wu W.-H. (2008): Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology, 148: 1201-1211. Go to original source... Go to PubMed...
  64. Waters B.M., Chu H.-H., DiDonato R.J., Roberts L.A., Eisley R.B., Lahner B., Salt D.E., Walker L. (2006): Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 141: 1446-1458. Go to original source... Go to PubMed...
  65. Watts-Williams S.J., Smith F.A., McLaughlin M.J., Patti A.F., Cavagnaro T.R. (2015) How important is the mycorrhizal pathway for plant Zn uptake? Plant Soil, 390: 157-166. Go to original source...
  66. Watts-Williams S.J., Cavagnaro T.R. (2018): Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Science, 274: 163-170. Go to original source... Go to PubMed...
  67. White J.G., Zasoski R.J. (1999): Mapping soil micronutrients. Field Crops Research, 60: 11-26. Go to original source...
  68. Wintz H., Fox T., Wu Y.Y., Feng V., Chen W., Chang H.S., Zhu T., Vulpe C. (2003): Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry, 278: 47644-47653. Go to original source... Go to PubMed...
  69. Wu J., Zhao F.-J., Ghandilyan A., Logoteta B., Guzman M.O., Schat H., Wang X., Aarts M.G.M. (2009): Identification and functional analysis of two ZIP metal transporters of the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 325: 79. Go to original source...
  70. Xu Y.-G., Wang B.-S., Yu J.-J., Ao G.-M., Zhao Q. (2010): Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays. Functional Plant Biology, 37: 194-205. Go to original source...
  71. Yan W., Chen G., Yang L., Gai J., Zhu Y. (2014): Overexpression of the rice phosphate transporter gene OsPT6 enhances tolerance to low phosphorus stress in vegetable soybean. Scientia Horticulturae, 177: 71-76. Go to original source...
  72. Yang H., Shu Y. (2015): Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. International Journal of Molecular Sciences, 16: 1484-1494. Go to original source... Go to PubMed...
  73. Yang X., Huang J., Jiang Y., Zhang H.-S. (2009): Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Molecular Biology Reports, 36: 281-287. Go to original source... Go to PubMed...
  74. Yang X.S., Wu J., Ziegler T.E., Yang X., Zayed A., Rajani M.S., Zhou D., Basra A.S., Schachtman D.P., Peng M., Armstrong C.L., Caldo R.A., Morrell J.A., Lacy M., Staub J.M. (2011): Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiology, 157: 1841-1852. Go to original source... Go to PubMed...
  75. Zhao F.J., Lombi E., McGrath S.P. (2003): Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249: 37-43. Go to original source...
  76. Zhao H., Eide D. (1996): The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Sciences, 93: 2454-2458. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.