Czech J. Genet. Plant Breed., 2012, 48(4):169-177 | DOI: 10.17221/45/2012-CJGPB

Detection of various U and M chromosomes in wheat-Aegilops biuncialis hybrids and derivatives using fluorescence in situ hybridisation and molecular markersOriginal Paper

Annamária SCHNEIDER, Márta MOLNÁR-LÁNG
Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary

The aim of the study was to select wheat-Aegilops biuncialis addition lines carrying Aegilops biuncialis chromosomes differing from those which were introgressed into the wheat-Ae. biuncialis addition lines produced earlier in Martonvásár, Hungary. In the course of the experiments new wheat-Ae. biuncialis addition lines carrying chromosomes 2Ub, 6Mb, 6Ub; 5Ub, 3Ub, 7Ub; 5Mb, 6Mb and 7Mb were selected. The 2Ub disomic addition line is relatively stable, as 91% of the progenies contain this chromosome pair. The 6Mb disomic addition line proved to be dwarf and sterile, but it still exists as a monosomic addition line. Progenies analysed from the 6Ub monosomic addition line did not carry the 6Ub chromosome. One plant containing the 5Ub, 3Ub and 7Ub chromosomes and one plant carrying 5Mb, 6Mb and 7Mb chromosomes showed very low fertility. Each of the plants produced a single seed, but seeds of the parent plants are still available. Line No. 49/00 carried a submetacentric Ae. biuncialis chromosome pair and the chromosome number 44 has been constant for several generations. After FISH no hybridisation site was observed on the Ae. biuncialis chromosome pair using the pSc119.2 and Afa family repetitive DNA probes, so it was not possible to identify the Ae. biuncialis chromosome pair. However, the use of wheat SSR markers and the (GAA)n microsatellite DNA probe allowed it to be characterised more accurately. These new lines facilitate gene transfer from Ae. biuncialis into cultivated wheat and the selection of U and M genome-specific wheat SSR markers.

Keywords: addition lines; FISH polymorphism; goatgrass; wheat SSR markers

Published: December 31, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SCHNEIDER A, MOLNÁR-LÁNG M. Detection of various U and M chromosomes in wheat-Aegilops biuncialis hybrids and derivatives using fluorescence in situ hybridisation and molecular markers. Czech J. Genet. Plant Breed. 2012;48(4):169-177. doi: 10.17221/45/2012-CJGPB.
Download citation

References

  1. Adonina I.G., Salina E.A., Pestsova E.G., Röder M.S. (2005): Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome, 48: 959-970. Go to original source... Go to PubMed...
  2. Badaeva E.D., Amosova A.V., Samatadze T.E., Zoschchuk S.A., Shostak N.G., Chikida N.N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. (2004): Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Systematics and Evolution, 246: 45-76. Go to original source...
  3. Baum B.R., Feldman M. (2010): Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum. Genome, 53: 430-438. Go to original source... Go to PubMed...
  4. Benavente E., Cifuentes M., Dusautoir J.C., David J. (2008): The use of cytogenetic tools for studies in the crop-wild gene transfer scenario. Cytogenetic and Genome Research, 120: 384-395. Go to original source... Go to PubMed...
  5. Chang S.B., De Jong H. (2005): Production of alien chromosome additions and their utility in plant genetics. Cytogenetic and Genome Research, 109: 335-343. Go to original source... Go to PubMed...
  6. Colmer T.D., Flowers T.J., Munns R. (2006): Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 57: 1059-1078. Go to original source... Go to PubMed...
  7. Contento A., Heslop-Harrison J.S., Schwarzacher T. (2005): Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenetic and Genome Research, 109: 34-42. Go to original source... Go to PubMed...
  8. Dhaliwal H.S., Harjit-Singh William M. (2002): Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica, 126: 153-159. Go to original source...
  9. Feldman M., Levy A.A. (2005): Allopolyploidy - a shaping force in the evolution of wheat genomes. Cytogenetic and Genome Research, 109: 205-258. Go to original source... Go to PubMed...
  10. Finch R.A., Miller T.E., Bennett M.D. (1984): "Cuckoo" Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it. Chromosoma, 90: 84-88. Go to original source...
  11. Friebe B., Tuleen N., Gill B.S. (1999): Development and identification of a set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome, 42: 374-380. Go to original source...
  12. Gerlach W.L., Bedbrook J.R. (1979): Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Research, 7: 1869-1885. Go to original source... Go to PubMed...
  13. Islam A.M.K.R., Shepherd K.W., Sparrow D.H.B. (1978): Production and characterisation of wheat-barley addition lines. In: Proc. 5th Int. Wheat Genet. Symp., New Delhi, 365-371.
  14. Jiang J., Friebe B., Gill B.S. (1994a): Chromosome painting of Amigo wheat. Theoretical and Applied Genetics, 89: 811-813. Go to original source... Go to PubMed...
  15. Jiang J., Friebe B., Gill B.S. (1994b): Recent advances in alien gene transfer in wheat. Euphytica, 73: 199-212. Go to original source...
  16. Landjeva S.P., Ganeva G.D. (2000): Chromosome N-banding polymorphism in Aegilops geniculata Roth. Genetic Resources and Crop Evolution, 47: 35-42. Go to original source...
  17. Landjeva S., Korzun V., Börner A. (2007): Molecular markers: actual and potential contributions to wheat characterisation and breeding. Euphytica, 156: 271-296. Go to original source...
  18. Lelley T., Stachel M., Grausgruber H., Vollmann J. (2000): Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome, 43: 661-668. Go to original source...
  19. Logojan A.A., Molnár-Láng M. (2000): Production of Triticum aestivum-Aegilops biuncialis chromosome additions. Cereal Research Communications, 28: 221-228. Go to original source...
  20. Ma X.F., Gustafson J.P. (2005): Genome evolution of allopolyploids: a process of cytological and genetic diploidisation. Cytogenetic and Genome Research, 109: 236-249. Go to original source... Go to PubMed...
  21. Molnár I., Gáspár L., Sárvári É., Dulai S., Hoffmann B., Molnár-Láng M., Galiba G. (2004): Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 31: 1149-1159. Go to original source... Go to PubMed...
  22. Molnár I., Benavente E., Molnár-Láng M. (2009): Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome, 52: 156-165. Go to original source... Go to PubMed...
  23. Molnár I., Cifuentes M., Schneider A., Benavente E., Molnár-Láng M. (2011a): Association between SSRrich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany, 107: 65-76. Go to original source... Go to PubMed...
  24. Molnár I., Kubaláková M., ©imková H., Cseh A., Molnár-Láng M., Doleľel J., (2011b): Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE, 6: e27708. Go to original source... Go to PubMed...
  25. Molnár-Láng M., Linc G., Nagy E.D., Schneider A., Molnár I. (2002): Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agronomica Hungarica, 50: 303-311. Go to original source...
  26. Molnár-Láng M., Cseh A., Szakács É., Molnár I. (2010): Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theoretical and Applied Genetics, 120: 1535-1545. Go to original source... Go to PubMed...
  27. Nagaki K., Tsujimoto H., Isono K., Sasakuma T. (1995): Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome, 38: 479-486. Go to original source... Go to PubMed...
  28. Pestsova E., Ganal M.W., Röder M.S. (2000): Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 43: 697-698. Go to original source...
  29. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. (1998): A microsatellite map of wheat. Genetics, 149: 2007-2023. Go to original source... Go to PubMed...
  30. Salina E.A., Numerova O.M., Ozkan H., Feldman M. (2004): Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome, 47: 860-867. Go to original source... Go to PubMed...
  31. Schneider A., Linc G., Molnár-Láng M. (2003): Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breeding, 122: 396-400. Go to original source...
  32. Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005): Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat-Aegilops biuncialis disomic addition lines. Genome, 48: 1070-1082. Go to original source... Go to PubMed...
  33. Schneider A., Molnár I., Molnár-Láng M. (2008): Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163: 1-19. Go to original source...
  34. Schneider A., Molnár I., Molnár-Láng M. (2010a): Selection of U and M genome-specific wheat SSR markers using wheat-Aegilops biuncialis and wheat-Ae. geniculata addition lines. Euphytica, 175: 357-364. Go to original source...
  35. Schneider A., Molnár I., Molnár-Láng M. (2010b): Production and FISH identification of wheat-Aegilops biuncialis addition lines and their use for the selection of U and M genome-specific molecular (SSR) markers. Acta Agronomica Hungarica, 58: 151-158. Go to original source...
  36. Shcherban A.B., Badaeva E.D., Amosova A.V., Adonina I.G., Salina E.A. (2008): Genetic and epigenetic changes of rDNA in a synthetic allotetraploid, Aegilops sharonensis × Ae. umbellulata. Genome, 51: 261-271. Go to original source... Go to PubMed...
  37. Tischner T., Köszegi B., Veisz O. (1997): Climatic programmes used in the Martonvásár phytotron most frequently in recent years. Acta Agronomica Academiae Scientiarum Hungaricae, 45: 85-104.
  38. Van Slageren M.W. (1994): Wild Wheats: a Monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen Agricultural University Papers, Wageningen.
  39. Vrána J., Kubaláková M., Simková H., Cíhalíková J., Lysák M.A., Dolezel J. (2000): Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics, 156: 2033-2041. Go to original source... Go to PubMed...
  40. Wang S., Yin L., Tanaka H., Tanaka K. Tsujimoto H. (2011): Wheat-Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breeding Science, 61: 189-195. Go to original source...
  41. Zhang H., Reader S.M., Liu X., Jia J.Z., Gale M.D., Devos K.M. (2001): Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theoretical and Applied Genetics, 103: 518-525. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.