Czech J. Genet. Plant Breed., 2025, 61(3):160-179 | DOI: 10.17221/45/2025-CJGPB

Transcriptome analysis reveals differential gene expression in tomato under high-temperature stress

Yun Li1, Xin Ye1, Lingzeng Lv1, Na Chen1*
1 College of Life Science and Resources and Environment, Yichun University, Yichun, China

Tomato is a major global crop, extensively cultivated in China. However, the molecular mechanisms underlying its responses to high-temperature stress remain poorly understood. This study investigates these mechanisms by examining a heat-resistant tomato variety, Hm 2-2 (R), and a heat-sensitive variety, BY 1-2 (S), under high temperature (40 °C). Total RNA was extracted from samples taken at 0 and 24 h post-treatment, followed by RNA-sequencing (RNA-seq). Differentially expressed genes (DEGs) were screened based on the criteria of |log2 fold change| ≥ 2 and false discovery rate ≤ 0.05. Gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway enrichment analysis were performed to explore the biological significance of these DEGs. The results revealed 6 038 upregulated and 2 866 downregulated DEGs in the R-0 (Hm 2-2 plants treated at 40 °C for 0 h) vs. R-24 (Hm 2-2 plants treated at 40 °C for 24 h) group and 5 297 upregulated and 3 920 downregulated DEGs in the S-0 (BY 1-2 plants treated at 40 °C for 0 h) vs. S-24 (BY 1-2 plants treated at 40 °C for 24 h) group, respectively. GO enrichment analysis indicated that the majority of DEGs were associated with biological processes, followed by cellular components and molecular functions. KEGG pathway analysis identified 130, 131, 89, and 115 regulatory (or altered) pathways in the R-0 vs. R-24, S-0 vs. S-24, S-0 vs. R-0, and S-24 vs. R-24 group comparisons, respectively. Notably, pathways related to protein processing in the endoplasmic reticulum and plant hormone signal transduction were significantly enriched, suggesting their critical roles in the tomato’s response to heat stress. Moreover, 156 transcription factors (TFs) implicated in heat stress response were identified, spanning various TF families such as MYB, AP2-EREBP, b-ZIP, bHLH, NAC, and WRKY. Quantitative RT-PCR analysis of 14 randomly selected DEGs validated the RNA-seq results confirming the reliability of the data. In summary, this study provides valuable insights into the molecular mechanisms of tomato’s responses to high-temperature stress, laying a crucial foundation for future research in this area.

Keywords: gene expression profile; heat response; quantitative RT-PCR; RNA-seq; transcription factors

Received: June 14, 2025; Revised: July 30, 2025; Accepted: July 30, 2025; Prepublished online: August 7, 2025; Published: September 5, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Li Y, Ye X, Lv L, Chen N. Transcriptome analysis reveals differential gene expression in tomato under high-temperature stress. Czech J. Genet. Plant Breed. 2025;61(3):160-179. doi: 10.17221/45/2025-CJGPB.
Download citation

Supplementary files:

Download fileLi_ESM.pdf

File size: 370.31 kB

Download file45-2025_CJGPB_Li_Table_S5_1.xls

File size: 145.94 kB

Download file45-2025_CJGPB_Li_Table_S6_2.xls

File size: 161.06 kB

Download file45-2025_CJGPB_Li_Table_S7_3.xls

File size: 21.09 kB

Download file45-2025_CJGPB_Li_Table_S8_4.xls

File size: 46.09 kB

References

  1. Ali M.S., Baek K.H. (2020): Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences, 21: 621. Go to original source... Go to PubMed...
  2. Almeida J., Perez-Fons L., Fraser P.D. (2021): A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. Plant, Cell and Environment, 44: 2211-2229. Go to original source... Go to PubMed...
  3. Alotaibi M., El-Hendawy S., Mohammed N., Alsamin B., Al-Suhaibani N., Refay Y. (2023): Effects of salicylic acid and macro- and micronutrients through foliar and soil applications on the agronomic performance, physiological attributes, and water productivity of wheat under normal and limited irrigation in dry climatic conditions. Plants (Basel), 12: 2389. Go to original source... Go to PubMed...
  4. Annadurai R.S., Jayakumar V., Mugasimangalam R.C., Katta M.A., Anand S., Gopinathan S., Sarma S.P., Fernandes S.J., Mullapudi N., Murugesan S., Rao S.N. (2012): Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics, 13: 663. Go to original source... Go to PubMed...
  5. Baillo E.H., Kimotho R.N., Zhang Z., Xu P. (2019): Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel), 10: 771. Go to original source... Go to PubMed...
  6. Balfagón D., Terán F., de Oliveira T.D.R., Santa-Catarina C., Gómez-Cadenas A. (2022): Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Plant Cell Reports, 41: 593-602. Go to original source... Go to PubMed...
  7. Bizouerne E., Ly Vu B., Ly Vu J., Verdier J., Buitink J., Leprince O. (2020): Dataset for transcriptome and physiological response of mature tomato seed tissues to light and heat during fruit ripening. Data in Brief, 34: 106671. Go to original source... Go to PubMed...
  8. Bu W., Huang Y., Chen L., Zhang M., Luo X., Zheng T., Shao F., Lei W., Xing W., Yang X., Wang B., Wang Z. (2025): Transcriptome analysis of tree peony under high temperature treatment and functional verification of PsDREB2A gene. Plant Physiology and Biochemistry, 219: 109405. Go to original source... Go to PubMed...
  9. Camejo D., Rodríguez P., Morales M.A., Dell'Amico J.M., Torrecillas A., Alarcón J.J. (2005): High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162: 281-289. Go to original source... Go to PubMed...
  10. Chen N., Shao Q., Lu Q., Li X., Gao Y. (2022): Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum. Scientific Reports, 12: 22137. Go to original source... Go to PubMed...
  11. Chen S., Zhou Y., Chen Y., Gu J. (2018): fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34: i884-i890. Go to original source...
  12. Das D., Bisht K., Chauhan A., Gautam S., Jaiswal J., Salvi P., Lohani P. (2023): Morpho-physiological and biochemical responses in wheat foliar sprayed with zinc-chitosan-salicylic acid nanoparticles during drought stress. Plant Nano Biology, 4: 100034. Go to original source...
  13. De Domenico S., Taurino M., Gallo A., Poltronieri P., Pastor V., Flors V., Santino A. (2019): Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses. Physiologia Plantarum, 165: 198-208. Go to original source... Go to PubMed...
  14. Devireddy A.R., Tschaplinski T.J., Tuskan G.A., Muchero W., Chen J.G. (2021): Role of reactive oxygen species and hormones in plant responses to temperature changes. International Journal of Molecular Sciences, 22: 8843. Go to original source... Go to PubMed...
  15. Ding H., Qian L., Jiang H., Ji Y., Fang Y., Sheng J., Xu X., Ge C. (2022): Overexpression of a Bcl-2-associated athanogene SlBAG9 negatively regulates high-temperature response in tomato. International Journal of Biological Macromolecules, 194: 695-705. Go to original source... Go to PubMed...
  16. Djanaguiraman M., Boyle D.L., Welti R., Jagadish S.V.K., Prasad P.V.V. (2018): Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biology, 18: 55. Go to original source... Go to PubMed...
  17. Eom S.H., Lim H.B., Hyun T.K. (2023): Overexpression of the Brassica rapa bZIP transcription factor, BrbZIP-S, increases the stress tolerance in Nicotiana benthamiana. Biology (Basel), 12: 517. Go to original source... Go to PubMed...
  18. Erpen L., Devi H.S., Grosser J.W., Dutt M. (2018): Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture, 132: 1-25. Go to original source...
  19. Graci S., Barone A. (2024): Tomato plant response to heat stress: A focus on candidate genes for yield-related traits. Frontiers in Plant Science, 14: 1245661. Go to original source... Go to PubMed...
  20. Hawkins R.D., Hon G.C. (2010): Next-generation genomics: an integrative approach. Nature Reviews Genetics, 11: 476-486. Go to original source... Go to PubMed...
  21. Higashi Y., Okazaki Y., Myouga F., Shinozaki K., Saito K. (2015): Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Scientific Reports, 5: 10533. Go to original source... Go to PubMed...
  22. Hua Y., Liu Q., Zhai Y., Zhao L., Zhu J., Zhang X., Jia Q., Liang Z., Wang D. (2023): Genome-wide analysis of the HSP20 gene family and its response to heat and drought stress in Coix (Coix lacryma-jobi L.). BMC Genomics, 24: 478. Go to original source... Go to PubMed...
  23. Huang H., Chen Y., Wang S., Qi T., Song S. (2023): Jasmonate action and crosstalk in flower development and fertility. Journal of Experimental Botany, 74: 1186-1197. Go to original source... Go to PubMed...
  24. Huang L.Z., Zhou M., Ding Y.F., Zhu C. (2022): Gene networks involved in plant heat stress response and tolerance. International Journal of Molecular Sciences, 23: 11970. Go to original source... Go to PubMed...
  25. Jeon S.W., Kim Y.R., Han J.Y., Jeong U., Cheong E.J., Choi Y.E. (2025): A heat-shock transcription factor in Panax ginseng, PgHSFA2, confers heat and salt resistance in transgenic tobacco. International Journal of Molecular Sciences, 26: 3836. Go to original source... Go to PubMed...
  26. Jian H., Wen S., Liu R., Zhang W., Li Z., Chen W., Zhou Y., Khassanov V., Mahmoud A.M.A., Wang J., Lyu D. (2023): Dynamic translational landscape revealed by genome-wide ribosome profiling under drought and heat stress in potato. Plants (Basel), 12: 2232. Go to original source... Go to PubMed...
  27. Jiang D., Li G.G., Yuan F.C., Lei S.K., Zhang H., Dai X.C., Zheng Y.S. (2024): Transcriptome analysis and gene mining of flowering Chinese cabbage in response to high temperature stress. Journal of Southern Agriculture, 55: 766-783.
  28. Jiang Y.C. (2023): Screening and identification of heat-resistant tomato strain and mapping of heat-resistant genes. [Master's Thesis.] Hebei Normal University of Science and Technology, China.
  29. Kan Y., Mu X.R., Gao J., Lin H.X., Lin Y. (2023): The molecular basis of heat stress responses in plants. Molecular Plant, 16: 1612-1634. Go to original source... Go to PubMed...
  30. Khan A.H., Ma Y., Wu Y., Akabr A., Shaban M., Ullah A., Deng J., Khan A.S., Chi H., Zhu L., Zhang X., Min L. (2023): High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling. The Crop Journal, 11: 33-45. Go to original source...
  31. Kim D., Langmead B., Salzberg S.L. (2015): HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12: 357-360. Go to original source... Go to PubMed...
  32. Kong G., Li H., Zheng J., Zhao Y., Shi Q., Zhao X., Yu Y. (2025): PgMYB96 enhances Physalis grisea high temperature tolerance by activating trithorax-like factor WD REPEAT CONTAINING5b. Journal of Experimental Botany, 2025: eraf097. Go to original source... Go to PubMed...
  33. Langmead B., Salzberg S.L. (2012): Fast gapped-read alignment with Bowtie 2. Nature Methods, 9: 357-359. Go to original source... Go to PubMed...
  34. Li B., Gao K., Ren H., Tang W. (2018): Molecular mechanisms governing plant responses to high temperatures. Journal of Integrative Plant Biology, 60: 757-779. Go to original source... Go to PubMed...
  35. Li M., Wang M., Chen J., Wu J., Xia Z. (2023): Sulfur dioxide improves the thermotolerance of maize seedlings by regulating salicylic acid biosynthesis. Ecotoxicology and Environmental Safety, 254: 114746. Go to original source... Go to PubMed...
  36. Li W., Hou X., Meng Z., Yue R. (2025a): Characterization and expression patterns of the NPR1-like genes in maize. Journal of Genetics, 104: 8. Go to original source...
  37. Li W., Huang S., Yang X., Xie Y., Meng X., Xu Z., Li Z., Zhou W., Zhang W., Wang S., Jin L., Jin N., Lyu J., Yu J. (2025b): Identification of the SP gene family and transcription factor SlSP5G promotes the high-temperature tolerance of tomatoes. International Journal of Biological Macromolecules, 298: 140043. Go to original source... Go to PubMed...
  38. Li Y., Gao Z., Lu J., Wei X., Qi M., Yin Z., Li T. (2022): SlSnRK2.3 interacts with SlSUI1 to modulate high temperature tolerance via abscisic acid (ABA) controlling stomatal movement in tomato. Plant Science, 321: 111305. Go to original source... Go to PubMed...
  39. Liang Y., Gong Z., Wang J., Zheng J., Ma Y., Min L., Chen Q., Li Z., Qu Y., Chen Q., Li X. (2021): Nanopore-based comparative transcriptome analysis reveals the potential mechanism of high-temperature tolerance in cotton (Gossypium hirsutum L.). Plants (Basel), 10: 2517. Go to original source... Go to PubMed...
  40. Liao C., Zheng Y., Guo Y. (2017): MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. New Phytologist, 216: 163-177. Go to original source... Go to PubMed...
  41. Liu W., Wang H., Chen Y., Zhu S., Chen M., Lan X., Chen G., Liao Z. (2017): Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnology and Applied Biochemistry, 64: 305-314. Go to original source... Go to PubMed...
  42. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods, 25: 402-408. Go to original source... Go to PubMed...
  43. Love M.I., Huber W., Anders S. (2014): Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15: 550. Go to original source... Go to PubMed...
  44. Luo A., Yang C., Yao Z.W., Zhang L.L., Ye H., Xu J.H., Lu H.P., Liu J.X. (2025): Transcription factors ERF74/77/108/125 enhance thermotolerance in rice by regulating common and distinct heat-responsive gene expression. Plant Biotechnology Journal, doi: 10.1111/pbi.70262. Go to original source... Go to PubMed...
  45. Lv Y.Q. (2021): The influence of temperature on the growth, yield and quality of tomato in greenhouse. [Master Thesis.] Shandong Agricultural University, China.
  46. Madasamy Raja G., Selvaraju P., Pathmanaban P., Vamsi Sagar P. (2025): Predicting color development and texture changes in tomatoes treated with hot water and exposed to high-temperature ethylene using support vector regression. Journal of Texture Studies, 56: e70004. Go to original source... Go to PubMed...
  47. Meng X., Wang N., He H., Tan Q., Wen B., Zhang R., Fu X., Xiao W., Chen X., Li D., Li L. (2022): Prunus persica transcription factor PpNAC56 enhances heat resistance in transgenic tomatoes. Plant Physiology and Biochemistry, 182: 194-201. Go to original source... Go to PubMed...
  48. Mesa T., Polo J., Arabia A., Caselles V., Munné-Bosch S. (2022): Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. Journal of Plant Physiology, 268: 153581. Go to original source... Go to PubMed...
  49. Mittler R., Finka A., Goloubinoff P. (2012): How do plants feel the heat? Trends in Biochemical Sciences, 37: 118-125. Go to original source... Go to PubMed...
  50. Nakashima K., Ito Y., Yamaguchi-Shinozaki K. (2009): Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149: 88-95. Go to original source... Go to PubMed...
  51. Niu Y., Wang X.J., Chen X., Yan Y., Wang J.S. (2022): Current situation, problems and countermeasures of tomato industry development in China and the achievements of tomato industry development in Ningxia. Heilongjiang Agricultural Sciences, 12: 70-74.
  52. Paul S., Duhan J.S., Jaiswal S., Angadi U.B., Sharma R., Raghav N., Gupta O.P., Sheoran S., Sharma P., Singh R., Rai A., Singh G.P., Kumar D., Iquebal M.A., Tiwari R. (2022): RNA-Seq analysis of developing grains of wheat to intrigue into the complex molecular mechanism of the heat stress response. Frontiers in Plant Science, 13: 904392. Go to original source... Go to PubMed...
  53. Pertea M., Pertea G.M., Antonescu C.M., Chang T.C., Mendell J.T., Salzberg S.L. (2015): StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33: 290-295. Go to original source... Go to PubMed...
  54. Qian C.M., Wu X.J., Chen L., Jiang C.H. (2002): Effects of high temperature stress on germination of tomato seed. Seed, 5: 20, 89.
  55. Qiu F., Zheng Y., Lin Y., Woldegiorgis S.T., Xu S., Feng C., Huang G., Shen H., Xu Y., Kabore M.A.F., Ai Y., Liu W., He H. (2023): Integrated ATAC-Seq and RNA-Seq data analysis to reveal OsbZIP14 function in rice in response to heat stress. International Journal of Molecular Sciences, 24: 5619. Go to original source... Go to PubMed...
  56. Rao X., Cheng N., Mathew I.E., Hirschi K.D., Nakata P.A. (2023): Crucial role of Arabidopsis glutaredoxin S17 in heat stress response revealed by transcriptome analysis. Functional Plant Biology, 50: 58-70. Go to original source... Go to PubMed...
  57. Rasheed F., Mir I.R., Sehar Z., Fatma M., Gautam H., Khan S., Anjum N.A., Masood A., Sofo A., Khan N.A. (2022): Nitric oxide and salicylic acid regulate glutathione and ethylene production to enhance heat stress acclimation in wheat involving sulfur assimilation. Plants (Basel), 11: 3131. Go to original source... Go to PubMed...
  58. Ren W., Ding B., Dong W., Yue Y., Long X., Zhou Z. (2024): Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene, 893: 147912. Go to original source... Go to PubMed...
  59. Seki M., Kamei A., Yamaguchi-Shinozaki K., Shinozaki K. (2003): Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Current Opinion in Biotechnology, 14: 194-199. Go to original source... Go to PubMed...
  60. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. (2021): Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants (Basel), 10: 259. Go to original source... Go to PubMed...
  61. Seth P., Sebastian J. (2024): Plants and global warming: Challenges and strategies for a warming world. Plant Cell Reports, 43: 27. Go to original source... Go to PubMed...
  62. Song C., Cao Y., Dai J., Li G., Manzoor M.A., Chen C., Deng H. (2022): The multifaceted roles of MYC2 in plants: Toward transcriptional reprogramming and stress tolerance by jasmonate signaling. Frontiers in Plant Science, 13: 868874. Go to original source... Go to PubMed...
  63. Su C.J., Jin Y.Z., Wu X., Fan B.W., Song. Y.N., Yang F.J. (2021a): Research status on the influence of high temperature stress on photosynthetic system of tomato and mitigating mechanism. Journal of Heilongjiang Bayi Agricultural University, 33: 13-20.
  64. Su Y., Huang Y., Dong X., Wang R., Tang M., Cai J., Chen J., Zhang X., Nie G. (2021b): Exogenous methyl jasmonate improves heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and expression of jasmonic acid-responsive genes. Frontiers in Plant Science, 12: 664519. Go to original source... Go to PubMed...
  65. Talaat N.B., Hanafy A.M.A. (2023): Spermine-salicylic acid interplay restrains salt toxicity in wheat (Triticum aestivum L.). Plants (Basel), 12: 352. Go to original source... Go to PubMed...
  66. Tian X., Wang F., Zhao Y., Lan T., Yu K., Zhang L., Qin Z., Hu Z., Yao Y., Ni Z., Sun Q., Rossi V., Peng H., Xin M. (2020): Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. Plant Biotechnol Journal, 18: 1109-1111. Go to original source... Go to PubMed...
  67. Todaka D., Quynh D.T.N., Tanaka M., Utsumi Y., Utsumi C., Ezoe A., Takahashi S., Ishida J., Kusano M., Kobayashi M., Saito K., Nagano A.J., Nakano Y., Mitsuda N., Fujiwara S., Seki M. (2024): Application of ethanol alleviates heat damage to leaf growth and yield in tomato. Frontiers in Plant Science, 15: 1325365. Go to original source... Go to PubMed...
  68. Vijayakumar A., Shaji S., Beena R., Sarada S., Sajitha Rani T., Stephen R., Manju R.V., Viji M.M. (2021): High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon, 7: e05988. Go to original source... Go to PubMed...
  69. Waadt R., Seller C.A., Hsu P.K., Takahashi Y., Munemasa S., Schroeder J.I. (2022): Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 23: 680-694. Go to original source... Go to PubMed...
  70. Wang G.N., Bai W.P., Wang S.M. (2020): Advances in research of signal transduction and transcriptional rezhuanlugulatory mechanism of plants in response to heat stress. Molecular Plant Breeding, 18: 8109-8118.
  71. Wang J., Chen C., Wu C., Meng Q., Zhuang K., Ma N. (2023): SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. Plant Physiology Biochemistry, 204: 108106. Go to original source... Go to PubMed...
  72. Wang Y., Zhou Y., Wang R., Xu F., Tong S., Song C., Shao Y., Yi M., He J. (2022): Ethylene response Factor LlERF110 mediates heat stress response via regulation of LlHsfA3A expression and interaction with LlHsfA2 in Lilies (Lilium longiflorum). International Journal of Molecular Sciences, 23: 16135. Go to original source... Go to PubMed...
  73. Wan S., Xin X.F. (2022): Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. Journal of Genetics and Genomics, 49: 704-714. Go to original source... Go to PubMed...
  74. Wei L.J., Yu B.C., Song E.L., Zheng H., Lu S.Q., Fu H.T. (2020): Gene mining for sex determination in cassava (Manihot esculenta Crantz) based on transcriptome sequencing. Journal of Southern Agriculture, 51: 1785-1796.
  75. Wen J., Jiang F., Weng Y., Sun M., Shi X., Zhou Y., Yu L., Wu Z. (2019): Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology, 19: 398. Go to original source... Go to PubMed...
  76. Wen J., Zhou R., Jiang F., Chen Z., Sun M., Li H., Wu Z. (2024): SlCathB2 as a negative regulator mediates a novel regulatory pathway upon high-temperature stress response in tomato. Physiologia Plantarum, 176: e14267. Go to original source... Go to PubMed...
  77. Wu D.C., Zhu J.F., Shu Z.Z., Wang W., Yan C., Xu S.B., Wu D.X., Wang C.Y., Dong Z.R., Sun G. (2020): Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zea mays L.) inbred lines at seedling stage. Protoplasma, 257: 1615-1637. Go to original source... Go to PubMed...
  78. Wu X., Zhu J., Chen X., Zhang J., Lu L., Hao Z., Shi J., Chen J. (2023): PYL family genes from Liriodendron chinense positively respond to multiple stresses. Plants (Basel), 12: 2609. Go to original source... Go to PubMed...
  79. Wu Z., Li T., Cao X., Zhang D., Teng N. (2022): Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B. Horticulture Research, 9: uhac186. Go to original source...
  80. Xi Y., Ling Q., Zhou Y., Liu X., Qian Y. (2022): ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 13: 986628. Go to original source... Go to PubMed...
  81. Xu Y.H., Liao Y.C., Zhang Z., Liu J., Sun P.W., Gao Z.H., Sui C., Wei J.H. (2016): Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Scientific Reports, 6: 21843. Go to original source... Go to PubMed...
  82. Xu Y., Zou S., Zeng H., Wang W., Wang B., Wang H., Tang D. (2022): A NAC transcription factor TuNAC69 contributes to ANK-NLR-WRKY NLR-mediated stripe rust resistance in the diploid wheat Triticum urartu. International Journal of Molecular Sciences, 23: 564. Go to original source... Go to PubMed...
  83. Yan S., Chen N., Huang Z., Li D., Zhi J., Yu B., Liu X., Cao B., Qiu Z. (2020): Anthocyanin fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist, 225: 2048-2063. Go to original source... Go to PubMed...
  84. Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. (2018): Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162: 2-12. Go to original source... Go to PubMed...
  85. Zhang A., Zhu Z., Shang J., Zhang S., Shen H., Wu X., Zha D. (2020): Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L.) under heat stress. PLoS ONE, 15: e0236980. Go to original source... Go to PubMed...
  86. Zhang L., Dai Y., Yue L., Chen G., Yuan L., Zhang S., Li F., Zhang H., Li G., Zhu S., Hou J., Tang X., Zhang S., Wang C. (2022): Heat stress response in Chinese cabbage (Brassica rapa L.) revealed by transcriptome and physiological analysis. PeerJ, 10: e13427. Go to original source... Go to PubMed...
  87. Zhang Q., Kong X., Yu Q., Ding Y., Li X., Yang Y. (2019): Responses of PYR/PYL/RCAR ABA receptors to contrasting stresses, heat and cold in Arabidopsis. Plant Signaling & Behavior, 14: 1670596. Go to original source... Go to PubMed...
  88. Zhang X., Li J., Li M., Zhang S., Song S., Wang W., Wang S., Chang J., Xia Z., Zhang S., Jia H. (2023): NtHSP70-8b positively regulates heat tolerance and seed size in Nicotiana tabacum. Plant Physiology and Biochemistry, 201: 107901. Go to original source... Go to PubMed...
  89. Zhao D., Xia X., Su J., Wei M., Wu Y., Tao J. (2019): Overexpression of herbaceous peony HSP70 confers high temperature tolerance. BMC Genomics, 20: 70. Go to original source... Go to PubMed...
  90. Zhao J., Lu Z., Wang L., Jin B. (2020): Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 22: 117. Go to original source... Go to PubMed...
  91. Zhou R., Kong L., Wu Z., Rosenqvist E., Wang Y., Zhao L., Zhao T., Ottosen C.O. (2010): Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum, 165: 144-154. Go to original source... Go to PubMed...
  92. Zhu W., Xue C., Chen M., Yang Q. (2023): StHsfB5 promotes heat resistance by directly regulating the expression of Hsp genes in potato. International Journal Molecular Science, 24: 16528. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.