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Abstract: Tomato is a major global crop, extensively cultivated in China. However, the molecular mechanisms under-
lying its responses to high-temperature stress remain poorly understood. This study investigates these mechanisms 
by examining a heat-resistant tomato variety, Hm 2-2 (R), and a heat-sensitive variety, BY 1-2 (S), under high tempera-
ture (40 °C). Total RNA was extracted from samples taken at 0 and 24 h post-treatment, followed by RNA-sequencing 
(RNA-seq). Differentially expressed genes (DEGs) were screened based on the criteria of  |log2 fold change| ≥ 2 and 
false discovery rate ≤ 0.05. Gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) metabolic pathway enrichment analysis were performed to explore the biological significance of these DEGs. 
The results revealed 6 038 upregulated and 2 866 downregulated DEGs in  the R-0 (Hm 2-2 plants treated at 40 °C 
for 0 h) vs. R-24 (Hm 2-2 plants treated at 40 °C for 24 h) group and 5 297 upregulated and 3 920 downregulated DEGs 
in the S-0 (BY 1-2 plants treated at 40 °C for 0 h) vs. S-24 (BY 1-2 plants treated at 40 °C for 24 h) group, respective-
ly. GO enrichment analysis indicated that the majority of DEGs were associated with biological processes, followed 
by cellular components and molecular functions. KEGG pathway analysis identified 130, 131, 89, and 115 regulatory 
(or altered) pathways in the R-0 vs. R-24, S-0 vs. S-24, S-0 vs. R-0, and S-24 vs. R-24 group comparisons, respectively. 
Notably, pathways related to protein processing in the endoplasmic reticulum and plant hormone signal transduction 
were significantly enriched, suggesting their critical roles in the tomato’s response to heat stress. Moreover, 156 tran-
scription factors (TFs) implicated in heat stress response were identified, spanning various TF families such as MYB, 
AP2-EREBP, b-ZIP, bHLH, NAC, and WRKY. Quantitative RT-PCR analysis of 14 randomly selected DEGs validated 
the RNA-seq results confirming the reliability of the data. In summary, this study provides valuable insights into the 
molecular mechanisms of tomato’s responses to high-temperature stress, laying a crucial foundation for future research 
in this area.
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Tomato (Solanum lycopersicum L.) is a globally 
significant crop, widely cultivated in China. The 
fruit is highly valued for its rich nutritional con-
tent, distinctive flavour, and high levels of vitamins, 
carbohydrates, minerals, and organic acids, making 
it a staple in the diet of Chinese residents (Todaka 

et al. 2024). In 2021, China produced 66.09 million 
tons of tomatoes, with the country leading the world 
in tomato cultivation area, reflecting the rapid de-
velopment of the tomato industry (Niu et al. 2022). 
Tomato growth and development are optimal at tem-
peratures between 15 °C and 30 °C, with deviations 
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from this range negatively impacting its growth and 
development (Su et al. 2021a). As global temperatures 
continue to rise, high temperatures pose a significant 
threat to crop productivity (Djanaguiraman et al. 
2018). Research has shown that elevated tempera-
tures can affect tomato seed vitality, even completely 
inhibiting germination in extreme cases (Qian et al. 
2002). High temperatures not only impede normal 
plant growth but also suppress photosynthesis, ulti-
mately reducing tomato yield and quality (Zandalinas 
et al. 2018). The accelerating pace of global warming 
has made high summer temperatures a major limit-
ing factor in tomato cultivation, as plants struggle 
to adapt to these changing environmental conditions 
(Zhou et al. 2010). 

High temperatures not only cause evident external 
damage to plants but also lead to the degradation 
of chloroplast structures, disruption of the photo-
synthetic system, and accumulation of intracellular 
reactive oxygen species. These conditions damage 
the cell membrane system and disrupt metabolic 
functions and physiological processes, negatively 
affecting plant growth, yield, and in severe cases, 
leading to plant death (Higashi et al. 2015; Li et al. 
2018; Zhao et al. 2020; Huang et al. 2022). Plants 
exposed to high temperatures rapidly sense and 
transmit heat signals, inducing the expression 
of heat-responsive genes, including transcription 
factors (TFs), protein kinases, and heat shock pro-
teins (HSPs), to regulate cellular and metabolic 
homeostasis, thereby enhancing their resistance 
to heat stress (Mittler et al. 2012; Kan et al. 2023; 
Seth & Sebastian 2024; Kong et al. 2025). Current 
research on tomato heat stress has primarily fo-
cused on the effects of high temperatures on growth 
and development, fruit quality, physiological and 
biochemical indices, and the screening of corre-
sponding heat-resistance identification indices and 
heat-resistance gene localization (Camejo et al. 
2005; Lv 2021; Vijayakumar et al. 2021; Mesa et al. 
2022; Jiang 2023; Graci & Barone 2024; Madasamy 
Raja et al. 2025). However, there is limited research 
on the molecular mechanisms underlying tomato’s 
responses to high temperatures (Ding et al. 2022; 
Meng et al. 2022; Wang et al. 2023; Wen et al. 2024; 
Li et al. 2025b). Transcriptome sequencing tech-
nology involves reverse transcribing mRNA into 
cDNA, allowing for the rapid and comprehensive 
acquisition of sequence information and the quan-
tification of nearly all cDNA in a specific sample. 
This technology is  instrumental in studying the 

differential expression of functional elements within 
the genome, as well as in classifying transcriptional 
profiles and analysing responses to various stress 
conditions (Hawkins & Hon 2010; Annadurai et al. 
2012). RNA-sequencing (RNA-seq) has emerged 
as a crucial tool for studying gene transcription and 
expression due to its speed, accuracy, and capacity 
to generate large datasets (Wei et al. 2020; Jiang et al. 
2024; Bu et al. 2025). It has been extensively used 
to investigate heat stress resistance in various plant 
species, including Arabidopsis thaliana (Rao et al. 
2023), Oryza sativa (Qiu et al. 2023), Zea mays (Wu 
et al. 2020), Triticum aestivum (Paul et al. 2022), 
Solanum melongena (Zhang et al. 2020), Solanum 
tuberosum (Jian et al. 2023), Gossypium hirsutum 
(Liang et al. 2021; Zhang et al. 2022). However, 
there are relatively few studies utilising RNA-seq 
technology to explore heat resistance in tomatoes. 
For example, Wen et al. (2019) combined traditional 
quantitative trait locus (QTL) mapping with QTL-seq 
analysis and RNA-seq, identifying four candidate 
genes (SlCathB2, SlGST, SlUBC5, and SlARG1) 
associated with heat resistance in major QTLs. 
Bizouerne et al. (2020) used RNA-seq to study the ef-
fects of light and temperature on tomato seed vitality 
during harvest, generating gene ontology (GO) and 
Mapman annotations on ITAG 4.0 for data analysis. 
These annotations serve as valuable resources for 
future data mining. Almeida et al. (2021) examined 
the changes in wild-type tomato fruits under tran-
sient heat stress at the transcriptome, cellular, and 
metabolite levels, identifying several heat stress 
response genes linked to metabolite changes, includ-
ing genes involved in fruit maturation regulation. 
Despite these advances, the molecular mechanisms 
by which heat-resistant genes regulate tomato heat 
resistance remain unclear. Therefore, it is essential 
to screen for heat-resistant genes in tomatoes using 
transcriptome analysis to analysis to deepen our 
understanding of this process.

In this study, two tomato inbred lines, Hm 2-2 
and BY 1-2, with distinct differences in heat resis-
tance, were used as experimental materials. A total 
of 12 samples from these lines, before and after heat 
stress treatment, were analysed using RNA-seq. Dif-
ferentially expressed genes (DEGs) were screened, 
followed by functional annotation analysis to identify 
key TFs involved in the tomato’s response to heat 
stress. This study provides a theoretical foundation 
for future research on the molecular mechanisms 
of tomato heat resistance.
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MATERIAL AND METHODS

Plant materials and high-temperature treatment. 
In this study, two tomato inbred lines, Hm 2-2 (R) 
and BY 1-2 (S), with evident differences in heat re-
sistance, were used as experimental materials (Chen 
et al. 2022). In March 2024, tomato seeds were sown 
in a culture chamber within the light culture room 
of the Key Laboratory at Yichun University. The 
day and night temperatures in the chamber were 
maintained at 28–30 °C and 15–17 °C, respectively, 
with 50% humidity, a 12/12-h dark cycle, and a light 
intensity of 30 000 lx. When the seedlings reached 
the 5–6 leaf stage, robust plants with consistent 
growth were selected and subjected to high-tem-
perature treatment in an artificial climate incubator 
set at 40 °C. Leaves from the two inbred lines were 
collected at 0 h (R-0 and S-0) and 24 h (R-24 and 
S-24) after treatment. Three biological replicates 
were set, yielding a total of 12 samples, which were 
immediately f lash-frozen in  liquid nitrogen and 
stored at –80 °C for subsequent RNA-sequencing.

RNA extraction, quality evaluation, cDNA li-
brary construction, and RNA-sequencing. Total 
RNA was extracted from the leaf tissue of six sam-
ples from each of the four lines (R-0, R-24, S-0, and 
S-24) using an RNA extraction kit (R6827, Omega 
Bio-Tek, USA) following the manufacturer’s protocol. 
Each experiment was conducted in three biological 
replicates. RNA integrity, the presence of DNA, and 
protein contamination were assessed by 1% agarose 
gel electrophoresis. The concentration and purity 
of the extracted RNA were measured using a Nan-
odrop microspectrophotometer (Nanodrop 2000, 
Thermo Fisher Scientific, USA), and RNA integrity 
(RIN value) was determined using an Agilent 2100 
bioanalyzer (Agilent Technologies, USA). Eukaryotic 
mRNA containing poly(A) tail was enriched using 
oligo(dT) magnetic beads, followed by fragmentation 
of the mRNA using a buffer solution. The first strand 
of cDNA was synthesised from the fragmented mRNA 
using random oligonucleotides as primers in the M-
MuLV reverse transcriptase system. The RNA strand 
was then degraded by RNaseH, and the second cDNA 
strand was synthesised in the DNA polymerase I system 
using dNTPs as raw material. The resulting double-
stranded cDNA was purified and end-repaired, and 
an A-tail was added before ligation with sequencing 
adapters. Approximately 200 bp cDNA fragments were 
screened using AMPure XP beads for PCR amplifica-
tion, and the PCR products were purified again using 

AMPure XP beads. The final library was sequenced 
on the Illumina HiSeq2500 platform (Gene Denovo 
Biotechnology Co., Ltd., Guangzhou, China).

Transcriptome assembly and annotation. To en-
sure high data quality, the raw sequencing data were 
filtered before analysis to reduce the interference 
caused by invalid data. The raw reads were quality-
controlled using fastp (Chen et al. 2018), and low-
quality reads (more than 50% of bases with a quality 
value Q ≤ 20) were filtered out to obtain clean reads. 
These clean reads were then aligned to the ribosomal 
RNA database using the short reads comparison 
tool Bowtie2 (Langmead & Salzberg 2012), with 
no mismatches allowed, to remove reads matching 
ribosomal sequences. The remaining unmapped reads 
were used for transcriptome analysis. Clean reads 
were mapped to the reference tomato (S. lycopersi-
cum) genome version ITAG4.0 (https:// solgenomics.
net/ftp/tomato_geno me/annotation/ITAG4.0_re-
lease/) using HISAT2 (Kim et al. 2015) software. 
Gene expression levels in the samples were calculated 
as Fragments Per Kilobase of transcript Per Million 
Fragments mapped (FPKM) values using Stringtie 
(Pertea et al. 2015) software based on the HISAT2 
alignment results. The FPKM value represents the 
expression level of each gene in the sample. 

Sample relationship analysis. Principal component 
analysis (PCA) was conducted using R (http://www.r-
project.org/) software based on the gene expression 
data to study the relationships between samples 
through dimensionality reduction. Additionally, Pear-
son correlation coefficients were calculated between 
each pair of samples using the expression data, and 
these correlations were visually represented in heat 
maps. This analysis helped assess the repeatability 
between samples and identify any potential outliers.

Expression profile and enrichment analysis 
of DEGs. Differential expression analysis was con-
ducted using DESeq2 (Love et al. 2014) software, with 
input data consisting of read count data obtained 
from gene expression level analysis. The analysis 
process involved three main steps: (1) normalisation 
of read counts; (2) calculation of hypothesis test-
ing probability (P-value) based on the model; and 
(3) multiple hypothesis testing to obtain the false 
discovery rate (FDR). Genes with a FDR < 0.05 and 
|log2 foldchange (FC)| ≥ 2 were considered DEGs.

To determine the primary biological functions of the 
DEGs, all DEGs were mapped to the GO database 
(http://www.geneontology.org/) and assigned GO 
terms. The number of DEGs associated with each 
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GO term was calculated to generate a list of DEGs 
with specific GO functions. Hypergeometric tests 
were then applied to identify GO terms significantly 
enriched among the DEGs compared to the back-
ground. Since different DEGs coordinate their bio-
logical functions in vivo, pathway-based analysis 
was conducted to  further explore the biological 
roles of these differential genes. Pathway enrichment 
analysis was performed using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway as the unit, 
applying hypergeometric tests to identify pathways 
significantly enriched in DEGs compared to the 
overall background. This analysis helps pinpoint 
the most critical biochemical metabolic pathways 
and signal transduction pathways involved in the 
activity of the differential genes. 

Verification of RNA-seq data by quantitative 
real-time PCR (qRT-PCR). To validate the reli-
ability of the RNA-seq data, quantitative real-time 
PCR (qRT-PCR) analysis was conducted on a ran-
domly selected set of  14 genes (HSP22.7 (Soly-
c01g102960.3), GAPA (Solyc02g020940.3), PMEI11 
(Solyc03g083770.1), ABP19A (Solyc03g123410.1), CA-
B6A (Solyc05g056050.3), PSAG (Solyc07g066150.1), 
LE25 (Solyc10g078770.2), JA2L (Solyc07g063410.3), 
W R KY24  (Solyc06g066370.4 ) ,  bZ IP53  (Soly-
c01g100460.3), ERF110 (Solyc04g071770.3), MYB15 
(Solyc03g005570.3), HSF30 (Solyc08g062960.4), and 
BT4 (Solyc02g092460.3)). Specific primers for these 
genes were designed using Primer 5 software (Premier, 
Canada) and synthesised by Sangon Biotech (Shang-

hai, China). cDNA was synthesised from 1  μg of total 
RNA using the StarScript III All-in-one RT Mix with 
gDNA Remover reagent Kit (GenStar, Beijing, China). 
qRT-PCR was then performed using the StepOne 
Real-Time PCR Instrument (Applied Biosystems, 
Thermo Fisher, USA) and corresponding software, 
with the 2× RealStar Fast SYBR qPCR Mix (with High 
ROX) (GenStar, Beijing, China) as the reaction mix. 
Each sample was analysed in triplicate. The tomato 
Actin (Solyc03g078400) gene was used as the inter-
nal control (Yan et al. 2020). The relative expression 
levels of the genes across three biological replicates 
were calculated using the 2–∆∆Ct method (Livak & 
Schmittgen 2001). The sequences of the 14 pairs 
of primers used for qRT-PCR are listed in Table S1 
in Electronic Supplementary Material (ESM). 

RESULTS

Experimental design and phenotypic charac-
terization. Plants exhibited different phenotypic 
symptoms after treated at 40 °C high temperature 
for 24 h. As shown in Figure 1, leaves of the Hm 2-2 
and BY 1-2 plants treated at 40 °C for 0 h showed 
no obvious symptoms. However, one or two leaves 
of the Hm 2-2 plants treated at 40 °C for 24 h showed 
wilting symptoms, but almost all the leaves of the 
BY 1-2 plants treated at 40 °C for 24 h showed wilt-
ing symptoms. These results indicate that tomato 
Hm 2-2 and BY 1-2 plants may respond differently 
to high-temperature stress.

Figure 1. Phenotypic symptoms of Hm 2-2 and BY 1-2 tomato seedlings before and after treated at 40 °C high temperature
R-0 – Hm 2-2 plants treated at 40 °C for 0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated at 40 °C 
for 0 h; S-24 – BY 1-2 plants treated at 40 °C for 24 h

R-0                                             S-0                                                       R-24                               S-24
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RNA extraction and quality assessment. The 
quality analysis of total RNA extracted from tomato 
samples, both before and after high-temperature 
treatment, demonstrated that the RNA was intact, 
with no signs of degradation or protein contamina-
tion (Figure S1 in ESM), as confirmed by agarose 
gel electrophoresis. The concentrations, measured 
using a Nanodrop spectrophotometer, were all above 
100 ng/μL (Table S2 in ESM), with OD260/OD280 
and OD260/OD230 ratios indicating high RNA pu-
rity. Additionally, the RNA content for each sample 
exceeded 1 μg, meeting the requirements for con-
structing twelve libraries and suitable for subsequent 
experiments. 

RNA quality control data statistics. Twelve cDNA 
libraries were constructed and sequenced using the Il-
lumina HiSeq 2500 platform. An overview of the RNA-
seq data is presented in Table 1. The R-0, R-24, S-0, 
and S-24 groups yielded approximately 40 040 068; 
39 138 831; 39 092 054, and 38 349 559 raw reads, 
respectively, which corresponded to 39 892 723; 
39 020 033; 38 963 658; and 38 233 107 clean reads. 
The average GC content across these groups was 
43.00, 42.29, 42.91%, and 42.35%, respectively. The 
Q20 (98.40, 98.63, 98.32%, and 98.42% for R-0, R-24, 
S-0, and S-24 groups, respectively) and Q30 (95.08, 

95.79, 94.86%, and 95.10% for R-0, R-24, S-0, and S-24 
groups, respectively) values were high, indicating 
the transcriptome data quality was excellent. The 
rRNA content was less than 3% across all samples, 
minimising interference in the subsequent bioin-
formatics statistics (Table S3 in ESM). Clean reads 
were mapped to the tomato genome using HISAT2 
software, with mapping rates of approximately 93.01, 
92.25, 93.11%, and 93.80% for R-0, R-24, S-0, and S-24 
groups, respectively. The proportion of unmapped 
reads was low, being 3.39, 3.75, 3.09%, and 3.52%, 
respectively, and the mapping results were consistent 
across all libraries (Table S4 in ESM). 

Sample relationship analysis. PCA was conduct-
ed on the 12 samples, as shown in Figure 2A. The 
analysis revealed significant differences between the 
two varieties before and after the treatment, while 
samples subjected to the same treatment clustered 
closely together, indicating good repeatability within 
each group. Pearson correlation coefficients were 
calculated between each pair of samples (Figure 2B), 
further confirming the high repeatability of the bio-
logical replicates. The global distribution of gene 
expression levels, evaluated using FPKM values, was 
similar across all samples (Figure 2C), demonstrating 
consistent expression trends and robust repeatability. 

Table 1. Overview of the sequence assembly after Illumina sequencing

Sample Raw reads Clean reads
Q20 Q30 GC content

(%)
R-0-1 41 449 070 41 283 548 98.33 94.91 43.01
R-0-2 39 912 050 39 764 382 98.38 95.03 43.07
R-0-3 38 759 084 38 630 240 98.49 95.31 42.91
R-0means 40 040 068 39 892 723 98.40 95.08 43.00
R-24-1 36 041 090 35 917 834 98.68 95.93 42.27
R-24-2 39 739 624 39 622 846 98.55 95.53 42.33
R-24-3 41 635 780 41 519 418 98.67 95.90 42.28
R-24means 39 138 831 39 020 033 98.63 95.79 42.29
S-0-1 39 291 702 39 156 818 98.31 94.86 42.89
S-0-2 36 590 354 36 486 080 98.26 94.65 42.93
S-0-3 41 394 106 41 248 076 98.39 95.08 42.90
S-0means 39 092 054 38 963 658 98.32 94.86 42.91
S-24-1 38 942 172 38 818 190 98.31 94.82 42.35
S-24-2 38 756 944 38 629 388 98.21 94.55 42.49
S-24-3 37 349 560 37 251 742 98.75 95.93 42.21
S-24means 38 349 559 38 233 107 98.42 95.10 42.35

Q20 – the percentage of bases with a quality value greater than or equal to 20; Q30 – the percentage of bases with a quality 
value greater than or equal to 30; GC – the proportion of guanine (G) and cytosine (C) bases among all the bases in the genome
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Analysis of DEGs. Differential expression analy-
sis was performed using the DESeq2 package with 
criteria set at FDR < 0.05 and |log2 FC| ≥ 2 DEGs. 
A total of 8 904 DEGs (6 038 and 2 866 significantly 
upregulated and downregulated genes, respectively) 
were identified in the R-0 vs. R-24 comparison, 9 217 
DEGs (5 297 and 3 920 significantly upregulated 
and downregulated genes, respectively) in the S-0 
vs. S-24 comparison, 775 DEGs (397 and 378 sig-
nificantly upregulated and downregulated genes, 
respectively) in the S-0 vs. R-0 comparison, and 
2 257 DEGs (972 and 1 285 significantly upregulated 
and downregulated genes, respectively) in the S-24 
vs. R-24 comparison (Figure 3A). A Venn diagram 
revealed that 56 genes were differentially expressed 
across all four groups (Figure 3B). Additionally, 5 519, 
74, 403, 79, 589, and 207 DEGs were identified in the 
following comparisons: R-0 vs. R-24 and S-0 vs. S-24; 

R-0 vs. R-24 and S-0 vs. R-0; R-0 vs. R-24 and S-24 vs. 
R-24; S-0 vs. S-24 and S-0 vs. R-0; S-0 vs. S-24 and 
S-24 vs. R-24; S-0 vs. R-0 and S-24 vs. R-24, respec-
tively. The volcano plots displayed a clear distribution 
pattern of upregulated and downregulated genes 
in all four sets of comparisons, with a significantly 
higher number of DEGs in the R-0 vs. R-24 and S-0 
vs. S-24 comparisons than in the S-0 vs. R-0 and 
S-24 vs. R-24 comparisons (Figure 3C). However, 
despite these differences, the overall distribution 
patterns remained similar across the four groups. 
Hierarchical clustering analysis further highlighted 
the overall expression patterns of DEGs (Figure 3D), 
demonstrating that more genes were upregulated 
in the experimental groups than those in the con-
trol groups. This upregulation of genes suggests 
that heat stress induced the expression of resistance 
genes. These findings provide a clear depiction of the 

Figure 2. Sample relationship analysis: principal component analysis (PCA) analysis of twelve expression samples (A), 
sample correlation heat map (B), violin illustration of gene expression in different groups (C)
R-0 – Hm 2-2 plants treated at 40 °C for 0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated at 40 °C 
for 0 h; S-24 – BY 1-2 plants treated at 40 °C for 24 h
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overall gene expression patterns across the different 
comparisons.

Verification of  RNA-seq data by  qRT-PCR. 
To verify the reliability of gene expression data ob-
tained through RNA-seq analysis, 14 DEGs were 
randomly selected for qRT-PCR analysis, with three 
biological replicates for each reactions. As depicted 
in Figure 4, several genes including HSP22.7, LE25, 
JA2L, WRKY24, bZIP53, ERF110, MYB15, HSF30, 
and BT4 were upregulated after high-temperature 
treatment. Conversely, genes such as GAPA, PMEI11, 
ABP19A, CAB6A, and PSAG exhibited downregulated 
following high-temperature treatment. The qRT-PCR 
results were consistent with the RNA-seq data, and 

the correlation coefficients between the qRT-PCR 
and RNA-seq data were both greater than 0.9, con-
firming the reliability of the gene expression patterns 
observed under high-temperature stress treatment.

GO analysis of DEGs. We annotated the func-
tion of GO for all DEGs across comparison groups 
using the GO database. Accordingly, all DEGs were 
classified into three categories: biological process-
es (24), molecular functions (12), and cellular compo-
nents (17). The distribution patterns of the number 
and type of enriched GO terms were similar across 
the four comparison groups (Figure 5). In terms 
of biological processes, metabolic processes, cellular 
processes, and single-organism processes dominated 

Figure 3. Differential expression analysis between treatments: comparison of the number of up- and down-regulated ge-
nes in different groups (A; yellow and blue points represent up- and down-regulated genes, respectively), Venn diagram 
of DEGs (B), volcano plots of DEGs between treatments (C; red and blue points represent up- and down-regulated genes, 
respectively; blue points represent no significant), clustering heat map of DEGs between treatments (D; red colour represents 
highly expressed genes; blue colour represents low-expressed genes. From red to blue: log10 (FPKM+1) is from large to small.
R-0 – Hm 2-2 plants treated at 40 °C for 0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated at 40 °C 
for 0 h; S-24 – BY 1-2 plants treated at 40 °C for 24 h
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the GO categories across the comparison groups. 
For molecular functions, catalytic activity, bind-
ing, and nucletic acid binding transcription factor 
activity were the most prominent. In the cellular 
components category, cell, cell part, and organelle 
were the major categories.

In GO functional enrichment analysis of the R-0 vs. 
R-24 comparison, several GO terms were significantly 
enriched and contained a substantial number of DEGs. 
These terms included plastid thylakoid (GO:0031976), 
NADP metabolic process (GO:0006739), pyridine-con-
taining compound metabolic process (GO:0072524), 
rRNA metabolic process (GO:0016072), pyridine 
nucleotide metabolic process (GO:0019362), nicoti-
namide nucleotide metabolic process (GO:0046496), 
and oxidoreduction coenzyme metabolic process 
(GO:0006733) (Figure 6A). Similarly, in the S-0 vs. 
S-24 comparison, such GO terms were NADP meta-
bolic process (GO:0006739), nicotinamide nucleotide 
metabolic process (GO:0046496), pyridine nucleotide 
metabolic process (GO:0019362), pyridine-containing 

compound metabolic process (GO:0072524), oxidore-
duction coenzyme metabolic process (GO:0006733), 
cofactor metabolic process (GO:0051186), coen-
zyme metabolic process (GO:0006732), and plastid 
thylakoid (GO:0031976) (Figure 6B). For the S-0 vs. 
R-0 comparison, the enriched GO terms with a sig-
nificant number of DEGs were associated with cata-
lytic activity (GO:0003824), oxidoreductase activity 
(GO:0016491), inflammatory response to antigenic 
stimulus (GO:0002437), acute inflammatory response 
to antigenic stimulus (GO:0002438), hypersensitiv-
ity (GO:0002524), and acute inflammatory response 
(GO:0002526) (Figure 6C). Lastly, in the S-24 vs. R-24 
comparison, the GO terms significantly enriched and 
containing a substantial number of DEGs included 
oxidoreductase activity (GO:0016491), mitochon-
drial membrane part (GO:0044455), mitochondrion 
(GO:0005739), mitochondrial part (GO:0044429), 
mitochondrial membrane (GO:0031966), mitochon-
drial envelope (GO:0005740), and respiratory electron 
transport chain (GO:0022904) (Figure 6D).

Figure 4. Quantitative real-time PCR validation: comparison of the R-0 vs. R-24 (A), comparison of the S-0 vs. S-24 (B)
Red and blue points represent up- and down-regulated genes, respectively; blue points represent no significant; the yellow 
column represents RNA-seq data, and the blue column represents qRT-PCR data; the experiments were performed in tripli-
cate; R-0 – Hm 2-2 plants treated at 40 °C for 0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated 
at 40 °C for 0 h; S-24 – BY 1-2 plants treated at 40 °C for 24 h; the data are presented as the mean ± SE (n = 3)
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KEGG pathway analysis of DEGs. To  further 
understand the biological and signal transduction 
pathways involved in  tomato’s response to heat 
stress, we conducted a KEGG pathway enrichment 
analysis for DEGs across the comparison groups 
and compared them to the entire transcriptomic 
context (Figure 7). In the R-0 vs. R-24 comparison, 
we identified 130 pathways, with the most DEGs being 
enriched in pathways such as “carbon metabolism” 
(113), “protein processing in endoplasmic reticulum” 
(96), “biosynthesis of amino acids” (83), “spliceo-
some” (77), and “starch and sucrose metabolism” (62) 
pathways (Figure 8A). Among these, 12 pathways had 
Q values < 0.05, indicating significant enrichment 
(Table S5 in ESM). For the S-0 vs. S-24 comparison, 

131 pathways were identified, with the majority 
of DEGs being enriched in “metabolic pathway” 
(937), followed by “biosynthesis of secondary me-
tabolites” (537), “carbon metabolism” (126), “protein 
processing in endoplasmic reticulum” (93), and “bio-
synthesis of amino acids” (89) pathways (Figure 8B). 
Moreover, 12 of 131 pathways had Q values < 0.05 
(Table S6 in ESM). In the S-0 vs. R-0 comparison, 
we identified 89 pathways, with significant enrich-
ment in “biosynthesis of secondary metabolites” (42), 
“beta-alanine metabolism” (11), “valine, leucine and 
isoleucine degradation” (11), “mismatch repair” (11), 
and “homologous recombination” (11) (Figure 8C). 
However, only seven pathways had Q values < 0.05 
(Table S7 in ESM). In the S-24 vs. R-24 comparison, 

Figure 6. Gene ontology (GO) functional enrichment analysis: the R-0 vs. R-24 comparison (A), the S-0 vs. S-24 com-
parison (B), the S-0 vs. R-0 comparison (C), the S-24 vs. R-24 comparison (D)
R-0 – Hm 2-2 plants treated at 40 °C for 0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated at 40 °C 
for 0 h; S-24 – BY 1-2 plants treated at 40 °C for 24 h
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115 pathways were identified, with DEGs being most 
enriched in “metabolic pathway” (234), “biosyn-
thesis of secondary metabolites” (123), “oxidative 
phosphorylation” (48), “carbon metabolism” (33), 
and “glycolysis/gluconeogenesis” (17) (Figure 8D). 
However, only two pathways had Q values < 0.05 

(Table S8). The Q values from the KEGG enrichment 
analysis indicate that although the level of enrichment 
in some pathways may not be the highest compared 
to that in others, the “metabolic pathway” consist-
ently shows significant enrichment of the most DEGs 
(Table S5–S8 in ESM).

Figure 8. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis: the top thirty KEGG 
pathways containing the largest number of differentially expressed genes (DEGs) in R-0 vs. R-24 comparison (A), the 
top thirty KEGG pathways containing the largest number of DEGs in S-0 vs. S-24 comparison (B), the top thirty KEGG 
pathways containing the largest number of DEGs in S-0 vs. R-0 comparison (C), the top thirty KEGG pathways contai-
ning the largest number of DEGs in S-24 vs. R-24 comparison (D)
The first 30 pathways with the smallest Q value were mapped; the ordinate coordinate was the pathway, and the abscess coor-
dinate was the percentage of the number of these pathways in the number of all differential genes; the darker the colour, the 
smaller the Q value, and the values on the column were the number and Q value of the pathway; R-0 – Hm 2-2 plants treated 
at 40 °C for 0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated at 40 °C for 0 h; S-24 – BY 1-2 
plants treated at 40 °C for 24 h
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Protein processing in the endoplasmic reticulum 
pathway. During protein processing in the endo-
plasmic reticulum pathway, 86 and 81 DEGs were 
induced and upregulated by high-temperature stress 
in the R-0 vs. R-24 and S-0 vs. S-24 comparisons, 
respectively. Most of these DEGs, including HSP90, 
HSP70, HSP40, and sHSF, were associated with heat 
stress response (Figure S2 in ESM). However, the 
expression patterns of different genes varied between 
the two comparisons, with genes such as Sec13/31, 
PDIs, and EDEM being upregulated in the S-0 vs. 
S-24 comparison but did not show any significant 

change in the R-0 vs. R-24 comparison. Conversely, 
Sec62/63, ERManI, IRE1, NEF, HSP70, and RMA1 
were upregulated in the R-0 vs. R-24 comparison, 
with no significant changes in the S-0 vs. S-24 com-
parison. These findings provide valuable insights 
into the mechanisms underlying tomato’s resistance 
to high-temperature stress.

Plant hormone signal transduction pathway. 
In the plant hormone signalling pathway, 71 genes 
were upregulated and 25 genes were downregu-
lated in the R-0 vs. R-24 comparison, while 78 genes 
were upregulated and 33 genes were downregulated 

Figure 9. Stratified clustering of differentially expressed genes (DEGs) expression profiles of 6 different transcription 
factor gene families identified in tomato: AP2-EREBP transcription factor gene family (A), MYB transcription factor gene 
family (B), WRKY transcription factor gene family (C), NAC transcription factor gene family (D), bHLH transcription 
factor gene family (E), b-ZIP transcription factor gene family (F)
The genes with a FDR < 0.05 and |log2foldchange(FC)| ≥ 2 were considered DEGs; R-0 – Hm 2-2 plants treated at 40 °C for 
0 h; R-24 – Hm 2-2 plants treated at 40 °C for 24 h; S-0 – BY 1-2 plants treated at 40 °C for 0 h; S-24 – BY 1-2 plants treated 
at 40 °C for 24 h

(A) Solyc01g090340.3
Solyc01g090560.4
Solyc01g095500.3
Solyc01g108240.3
Solyc02g077370.1
Solyc02g092050.3
Solyc03g006320.1
Solyc03g007460.3
Solyc03g026280.3
Solyc03g093560.1
Solyc03g114440.1
Solyc03g118190.4
Solyc03g119580.1
Solyc03g119800.3
Solyc03g124110.2
Solyc04g071770.3
Solyc04g072900.1
Solyc04g077490.3
Solyc05g050830.3
Solyc05g051200.1
Solyc05g052040.1
Solyc05g052050.1
Solyc05g052410.3
Solyc06g050520.3
Solyc06g065820.3
Solyc06g066390.3
Solyc06g068360.3
Solyc06g068570.4
Solyc06g075510.4
Solyc06g082590.1
Solyc07g054220.1
Solyc08g007820.1
Solyc08g078170.1
Solyc08g078180.1
Solyc08g078190.2
Solyc09g075420.3
Solyc10g006130.1
Solyc10g009110.1
Solyc10g050970.1
Solyc10g076370.3
Solyc12g009240.1
Solyc12g044390.3
Solyc12g056590.2

Solyc01g057910.3
Solyc01g102340.3
Solyc02g079280.3
Solyc02g088190.4
Solyc02g090400.4
Solyc03g005570.3
Solyc03g093890.3
Solyc03g119370.2
Solyc04g005710.3
Solyc05g007870.3
Solyc05g009230.3
Solyc05g053330.3
Solyc06g005310.3
Solyc06g005330.3
Solyc06g069850.3
Solyc06g083900.3
Solyc07g054840.4
Solyc08g065910.1
Solyc08g066190.2
Solyc08g068320.3
Solyc09g011780.3
Solyc09g090130.3
Solyc10g005460.3
Solyc10g044680.2
Solyc10g083900.2
Solyc11g071300.2
Solyc11g072060.3
Solyc11g073120.2
Solyc12g049350.2

Solyc01g079260.4
Solyc01g095100.4
Solyc01g095630.3
Solyc01g104550.3
Solyc02g032950.3
Solyc02g072190.4
Solyc02g080890.3
Solyc02g093050.3
Solyc03g007380.2
Solyc03g113120.4
Solyc03g116890.3
Solyc04g078550.3
Solyc05g012500.3
Solyc05g015850.4
Solyc05g055750.3
Solyc06g066370.4
Solyc06g068460.3
Solyc07g005650.4
Solyc07g051840.4
Solyc08g006320.4
Solyc08g008280.3
Solyc08g067340.4
Solyc08g067360.3
Solyc08g081610.4
Solyc08g082110.4
Solyc09g014990.4
Solyc10g011910.4
Solyc10g084380.1
Solyc12g096350.2

Solyc01g104900.3
Solyc02g061910.1
Solyc02g081270.4
Solyc02g088180.3
Solyc03g097650.3
Solyc03g115850.3
Solyc04g005610.3
Solyc04g009440.3
Solyc04g078670.3
Solyc04g079940.3
Solyc05g007770.3
Solyc06g060230.3
Solyc06g069710.3
Solyc06g074170.3
Solyc07g063410.3
Solyc07g063420.3
Solyc07g066330.3
Solyc10g083450.3
Solyc11g008010.2
Solyc11g017470.2
Solyc12g013620.2

Solyc01g086870.3
Solyc01g096370.4
Solyc01g098720.3
Solyc01g102300.3
Solyc01g109700.3
Solyc02g078130.3
Solyc02g087860.3
Solyc02g093280.2
Solyc03g097820.2
Solyc03g118310.4
Solyc03g119390.4
Solyc03g121240.1
Solyc04g007430.2
Solyc04g078790.3
Solyc05g007210.2
Solyc06g008030.3
Solyc08g062780.2
Solyc08g076820.3
Solyc09g097870.4
Solyc12g010170.2

Solyc01g100460.3

Solyc01g108080.4

Solyc02g085610.4

Solyc02g092090.3

Solyc04g071510.3

Solyc04g081190.3

Solyc05g050220.3

Solyc06g009640.2

Solyc07g062710.4

Solyc08g061130.3

Solyc10g055550.3

Solyc10g078670.3

Solyc10g080770.3

Solyc12g010800.2

(B)

(D)

(E) (F)

15.00
12.00
9.00
6.00
3.00
0.00
−3.00
−6.00

R-0 vs. R-24 S-0 vs. S-24

R-0 vs. R-24 S-0 vs. S-24 R-0 vs. R-24 S-0 vs. S-24

R-0 vs. R-24 S-0 vs. S-24R-0 vs. R-24 S-0 vs. S-24R-0 vs. R-24 S-0 vs. S-24

8.00
6.00
4.00
2.00
0.00
−2.00
−4.00
−6.00
−8.00
−10.00

(C) 6.00
5.00
4.00
3.00
2.00
1.00
0.00
−2.00
−3.00

10.00
8.00
6.00
4.00
2.00
0.00
−2.00
−4.00
−6.00

6.00

4.00

2.00

0.00

−2.00

−4.00

−6.00

6.00
5.00
4.00
3.00
2.00
1.00
0.00
−1.00
−2.00
−3.00

https://www.agriculturejournals.cz/web/cjgpb/
https://cjgpb.agriculturejournals.cz/esm/45/2025-CJGPB/1.pdf


173

Czech Journal of Genetics and Plant Breeding, 61, 2025 (3): 160–179	 Original Paper

https://doi.org/10.17221/45/2025-CJGPB

in the S-0 vs. S-24 comparison. Most DEGs, such 
as auxin-responsive AUX1; cytokine-responsive 
CRE1 and B-ARR; gibberellin-responsive GID1 and 
TF; abscisic acid-responsive PYR/PYL and SnRK2; 
ethylene-responsive ETR, CTR, EBF1/2, EIN3, and 
SIMKK; brassinosteroid-responsive TCH4; salicylic 
acid-responsive NPR1, were upregulated in both R-0 
vs. R-24 and S-0 vs. S-24 comparisons (Figure S3 
in ESM). However, there were notable differences 
in the expression of certain DEGs between the two 
comparisons. For example, salicylic acid-responsive 
PR-1 was upregulated in the S-0 vs. S-24 comparison 
but downregulated in the R-0 vs. R-24 comparison. 
The expression of jasmonic acid-responsive JAR1 
was downregulated in the R-0 vs. R-24 comparison, 
whereas jasmonic acid-responsive JAZ was upregu-
lated and CYCD3 was downregulated in the S-0 vs. 
S-24 comparison, with JAR1 showing no significant 
change.

Gene expression analysis of transcription fac-
tors. TFs are DNA-binding proteins that interact 
with the cis-acting elements of genes to either acti-
vate or inhibit gene transcription. They play a cru-
cial role in regulating various biological pathways. 
In this study, more than 1 000 TFs were identified, 
with the majority belonging to different TF families 
such as MYB, AP2-EREBP, b-ZIP, bHLH, NAC, and 
WRKY. Among these, the AP2-EREBP subfamily (part 
of the ERF family), with 43 DEGs, stood out as the 
largest TF family responding to heat shock in the 
leaves of tomato seedlings under high-temperature 
stress (Figure 9A, Table S9 in ESM). Additionally, 
we identified 29, 29, 21, 20, and 14 DEGs belonging 
to the MYB, WRKY, NAC, bHLH and bZIP families, 
respectively (Figure 9B–F, Table S10–S14 in ESM). 
These TF genes exhibited various expression patterns 
in the leaves of tomato seedlings, indicating their 
potential involvement in the heat shock response and 
crucial role in improving the resistance of tomato 
to heat stress. 

DISCUSSION

With the increasing threat of global warming, ag-
riculture worldwide faces significant challenges due 
to high temperatures, which severely inhibit crop 
growth and development, leading to decreased yield 
and quality (Wang et al. 2020). Therefore, breeding 
heat-resistant varieties has become a crucial goal 
in current crop breeding programs. Understanding 
the molecular mechanisms of heat stress responses 

and identifying heat-resistant genes can provide the 
foundation for breeding new heat-resistant varie-
ties. Tomatoes, one of the most important vegetable 
and fruit crops globally, are particularly sensitive 
to high-temperature stress, which can drastically 
reduce both yield and quality. Consequently, study-
ing the molecular mechanisms underlying the heat 
shock response is essential for breeding tomatoes 
with improved heat resistance. The advent of next-
generation sequencing technology over the past 
decade has revolutionised our understanding of the 
mechanisms involved in heat shock responses and the 
development of heat-resistant plant varieties. In this 
study, we constructed 12 cDNA libraries from total 
RNA isolated from tomato leaves and sequenced 
them using the Illumina HiSeq TM 2500 platform. 
We identified 8 960 and 9 217 DEGs in the R-0 vs. 
R-24 and S-0 vs. S-24 comparisons, respectively, 
indicating that these heat shock-related genes are 
induced by high temperatures. All DEGs were clas-
sified into three GO categories—molecular function, 
biological process, and cellular component. The 
most enriched GO terms were related to metabolic 
processes. The GO functional classification analy-
sis revealed that DEGs across the four groups were 
associated with various functions, involving many 
biological processes such as stress resistance and 
changes in cell membrane integrity, providing further 
insights into the molecular mechanisms of tomato’s 
responses to heat shock. 

Plants have evolved complex self-defence mecha-
nisms to enhance their adaptability to extreme en-
vironments when exposed to high temperatures. 
HSPs are critical proteins synthesised in response 
to high temperatures and are involved in various 
environmental stress responses, regulating numer-
ous developmental processes (Hua et al. 2023; Zhu 
et al. 2023). Based on  their apparent molecular 
weight, plant HSPs are categorised into five main 
families: HSP40, HSP70, HSP90, HSP100, and small 
HSPs (sHSPs). These proteins contribute to protein 
folding in the endoplasmic reticulum, stabilisation 
of damaged polypeptide chains, protein complex 
polymerisation, regulation of intracellular protein 
homeostasis, and chloroplast movement (Ren et al. 
2024). Heat shock transcription factors (HSFs) and 
HSPs play a pivotal role in plant heat shock response. 
KEGG analysis revealed that DEGs were significantly 
enriched in the protein processing pathway in the 
endoplasmic reticulum under heat shock condi-
tions. Genes such as HSP70, HSP90, HSP40, and 
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sHSF responded to high temperatures, with their 
expression levels being upregulated when toma-
toes were exposed to high temperatures (Figure S2 
in ESM). Previous studies have demonstrated that 
the overexpression of HSP70 enhances the tolerance 
of transgenic plants to high temperatures (Nakashima 
et al. 2009). For instance, Zhao et al. (2019) cloned 
PlHSP70 from herbaceous peony and found that its 
overexpression improved the heat tolerance of trans-
genic Arabidopsis thaliana, offering a theoretical basis 
for future genetic manipulation aimed at increasing 
heat tolerance in Arabidopsis. Similarly, Zhang et al. 
(2023) concluded that tobacco NtHSP70-8b plays 
a significant role in the heat stress response, with 
its overexpression contributing to improving crop 
tolerance to heat stress. Jeon et al. (2025) found that 
overexpression of Panax ginseng PgHSFA2 increases 
the expression of HSPs in tobacco and enhances the 
resistance of transgenic plants to high-temperature 
stress. These findings align with our results, sug-
gesting that high-temperature treatment disrupts 
the normal physiological functions of the endoplas-
mic reticulum, thereby affecting protein synthesis, 
modification, and proper folding.

High temperature, as a form of abiotic stress, pro-
foundly impact plant growth and survival. Adapting 
to and tolerating such stress involves complex sensing, 
signalling, and response mechanisms. Plant responses 
to abnormal or extreme temperature fluctuations 
are primarily regulated by plant hormones, which 
are signalling compounds that regulate key aspects 
of growth, development, and environmental stress 
responses. Hormones such as abscisic acid (ABA), 
auxin, brassinolide (BR), cytokinin (CK), ethylene 
(ET), gibberellic acid (GA), jasmonic acid (JA), and 
salicylic acid (SA) are well-known regulators of plant 
adaptation to environmental conditions (Devireddy 
et al. 2021; Waadt et al. 2022). ABA, in particular, 
plays a crucial role in adaptation to high-temperature 
stress through its core signalling pathway, involving 
pyrabactin resistance (PYR)/pyrabactin resistance-
like (PYL)/ABA receptor regulatory components 
(RCAR), protein phosphatase 2C (PP2C), and sucrose 
non-fermentation (SNF1)-associated protein kinase 2 
(SnRK2) (Zhang et al. 2019). Li et al. (2022) reported 
that SlSnRK2.3 interacts with SlSUI1 to modulate 
high-temperature tolerance in tomatoes by regu-
lating stomatal movement via ABA. Similarly, Wu 
et al. (2023) found that the expression of LcPYLs 
from Liriodendron chinense was upregulated in re-
sponse to heat stress. In this study, the expression 

of SnRK2 and PYR/PYC were downregulated in the 
R-0 vs. R-24 and S-0 vs. S-24 comparisons (Figure S3 
in ESM). Ethylene response factors (ERFs) are also 
involved in the heat stress response of many plants. 
Wang et al. (2022) identified LlERF110 as an im-
portant TF in the ethylene signalling pathway from 
the high-temperature transcriptome of lilies, where 
its virus-induced gene silencing reduced the basal 
heat-resistant phenotype and significantly decreased 
the expression of HSF-HSP pathway-related genes 
LlHsfA2, LlHsfA3A, and LlHsfA5. Luo et al. (2025) 
reported that TFs ERF74/77/108/125 enhance the 
thermotolerance in rice by regulating common and 
distinct heat-responsive gene expression. In this study, 
the expression of ERF1/2 was upregulated in the R-0 
vs. R-24 comparison group (Figure S3 in ESM). JA 
is another critical plant hormone known not only for 
its roles in growth and development, and resistance 
to pathogens and insect grazing (Song et al. 2022; 
Wan & Xin 2022; Huang et al. 2023), but also for its 
involvement in coping with various abiotic stresses 
(Liu et al. 2017; De Domenico et al. 2019; Ali & Baek 
2020; Seleiman et al. 2021), including heat stress (Xu 
et al. 2016; Tian et al. 2020; Su et al. 2021b; Khan 
et al. 2023). Our findings support this, as the ex-
pression of JA signalling gene JAR1 was upregulated 
following high-temperature treatment in the R-0 vs. 
R-24 comparison. Additionally, the genes JAZ and 
CYCD3 showed differential expression in the S-0 vs. 
S-24 comparison, with the expression of JAZ being 
upregulated and CYCD3 downregulated (Figure S3 
in ESM). SA has also been extensively studied over the 
past decade for its role in plant resistance to abiotic 
stress (Alotaibi et al. 2023; Das et al. 2023; Talaat & 
Hanafy 2023) and is recognised as an important en-
dogenous signalling molecule in plants, playing a key 
role in alleviating heat stress (Balfagón et al. 2022; 
Rasheed et al. 2022; Li et al. 2023; Li et al. 2025a). 
In this study, the expression of SA signalling gene 
NPR1 was upregulated in both R-0 vs. R-24 and S-0 
vs. S-24 groups. Moreover, PR-1 exhibited variable 
expression, with its expression being downregulated 
in the R-0 vs. R-24 comparison and upregulated 
in the S-0 vs. S-24 comparison (Figure S3 in ESM). 
These findings suggest that plant hormones are 
crucial components of the tomato’s response to high-
temperature stress.

To protect themselves from abiotic and biological 
stresses, plants have evolved complex physiologi-
cal and biochemical responses to adapt to adverse 
environmental conditions. A crucial component 
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of these adaptive responses is the role of plant TFs 
and their corresponding cis-regulatory sequences 
(Seki et al. 2003). TFs, such as NAC, MYB, AP2/
ERF, WRKY, and bZIP, are instrumental in mediat-
ing plant adaptation to various stresses (Erpen et al. 
2018; Baillo et al. 2019; Xu et al. 2022). Xi et al. (2022) 
isolated the NAC TF gene ZmNAC074 from maize 
and demonstrated that it plays a key role in plant heat 
tolerance. This gene presents itself as a promising 
candidate for regulating heat tolerance and could 
be utilised in the genetic improvement of maize 
and other crops. Similarly, Liao et al. (2017) re-
ported that the MYB30 TF regulates oxidative and 
heat stress responses through ANNEXIN-mediated 
cytosolic calcium signalling in Arabidopsis, indi-
cating the broader relevance of MYB TFs in stress 
response mechanisms. Kong et al. (2025) reported 
that PgMYB96 enhanced Physalis grisea tolerance 
to high-temperature stress by activating trithorax-
like factor WD REPEAT CONTAINING5b. Moreover, 
Wu et al. (2022) identified LlWRKY22 from Lilium 
longiflorum as a potential new regulator of heat stress 
response, which actively participates in establishing 
heat tolerance by activating itself and the heat-related 
LlDREB2B gene. Eom et al. (2023) further concluded 
that BrbZIP-S from Brassica rapa could regulate 
plant tolerance to dark stress and heat stress. In this 
study, we identified 156 TFs that may be associated 
with the tomato’s response to high-temperature 
stress, belonging to different TF families, including 
MYB, AP2-EREBP, b-ZIP, bHLH, NAC, and WRKY 
(Figure 9). These findings underscore the critical role 
of TFs in the tomato’s heat stress response and suggest 
that these TFs represent key candidate regulatory 
genes that could be targeted for enhancing heat tol-
erance, as well as for broader genetic improvements 
in tomato. Finally, we compared samples at 0 h and 
24 h after high-temperature treatment; this design 
may conflate treatment effects with natural devel-
opmental changes over time. And in future studies, 
we will consider the mock-treated 24 h controls 
to better isolate heat-specific responses.

CONCLUSION

In this study, RNA-seq analysis of total RNA iso-
lated from tomato leaves led to the construction 
of 12 cDNA libraries, allowing us to identify the 
changes in gene expression following high-tempera-
ture treatment. We investigated the expression levels 
and types of DEGs and performed GO and KEGG 

enrichment analyses. The KEGG pathway enrich-
ment analysis of DEGs revealed that the protein 
processing pathway in the endoplasmic reticulum 
plays a significant role in the tomato’s response 
to heat stress, primarily through the induction 
of HSPs such as HSP40, HSP70, HSP90, HSP100, 
and sHSPs. Additionally, the plant hormone signal-
ling pathway was found to be crucial in the tomato’s 
response to high temperature. We also identified 
156 TFs potentially involved in the tomato’s heat 
stress response, belonging to different TF families, 
including MYB, AP2-EREBP, b-ZIP, bHLH, NAC, 
and WRKY. The reliability of the RNA-seq data 
was further validated by qRT-PCR. Overall, the re-
sponse to high temperature in the two tomato inbred 
lines studied is complex and distinct. The findings 
of this research provide a valuable foundation for 
the identification and functional analysis of DEGs. 
Moreover, these results offer critical insights and 
important clues for the further exploration and 
identification of candidate genes for heat-resistant 
breeding in tomatoes. 
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