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Abstract: Solanum commersonii shows tolerance to low temperatures, a key target trait for potato breeding. Calcium-
dependent protein kinases (CIPKs) play a significant role in plant defence response to several stresses, including cold.
In this study, we observed the expression of ScCIPK1, ScCIPK3, ScCIPK23 and ScCIPK24 in S. commersonii exposed
to 4 °C at multiple time intervals. Initial findings revealed that these genes were under-expressed after 10 and 30 min-
utes of cold stress, except ScCIPK3. Notably, after 24 hours, all genes displayed higher expression levels compared
to the non-stressed controls. These findings highlight the role of ScCIPK3 in the early stages of cold response and
indicate a coordinated regulatory mechanism across CIPKs that likely contributes to the cold stress tolerance observed
in S. commersonii. In this work, we introduce a model to elucidate the signalling crosstalk under cold stress in S. com-

mersonii, providing insights that could facilitate the development of cold-resistant potato cultivars.
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Plants, as sessile organisms, are constantly ex-
posed to environmental stresses and have evolved
complex mechanisms to respond effectively. Central
to these responses is the rapid elevation of intracel-
lular calcium (Ca?*) levels, which initiates down-
stream signalling through calcium-binding proteins
such as calmodulin-like proteins (CaMLs), calcium-
dependent protein kinases (CDPKs), calcineurin
B-like proteins (CBLs), and CBL-interacting protein
kinases (CIPKs) (Ghosh et al. 2022). While CaMLs
broadly interact with various targets and CDPKs
act as direct Ca**-dependent kinases, CBLs specifi-
cally bind CIPKs, forming complexes that trigger
phosphorylation cascades involved in modulating
transcription factors and other regulatory proteins

(Huang et al. 2011; Tang et al. 2020). Genome-wide
studies have identified CBL-CIPK networks across
numerous species (e.g. Aslam et al. 2019; Du et al.
2021; Sun et al. 2021). In the wild potato, 27 CIPK
genes have been linked to drought and osmotic
stress, including interactions between StCBL and
StCIPK10 (Ma et al. 2021). The cold-tolerant wild
species Solanum commersonii, which features 10 CBL
and 26 CIPK genes (Aversano et al. 2015; Esposito
et al. 2019), is a promising genetic resource for im-
proving abiotic stress tolerance in cultivated po-
tato (S. tuberosum) (Dong et al. 2023). In particular,
phylogenetic analysis revealed the presence of two
CIPK3 paralogs in S. commersonii compared to one
in S. tuberosum (Aversano et al. 2015; Esposito et al.
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2019). Transcriptome profiling has further shown
that CIPKs in S. commersonii exhibit differential
expression patterns under various biotic and abiotic
stresses (Esposito et al. 2019), highlighting their
regulatory diversity and conservation across species.
Among wild potatoes, S. commersonii is particu-
larly suited to studying cold stress signalling due
to its exceptionally low-temperature tolerance (Vega
etal. 2000). To investigate the involvement of CIPKs
in its cold response, we analysed the transcript pro-
files of four genes — ScCIPK1, ScCIPK3, ScCIPK23,
and ScCIPK24 — following exposure to 4 °C. These
genes were selected as the most highly expressed
intron-poor members in S. commersonii (Esposito
et al. 2019), whose Arabidopsis orthologs are key
regulators of abiotic stress and cold signalling (Qiu
et al. 2002; Kim et al. 2003; D’Angelo et al. 2006;
Li et al. 2006; Cheong et al. 2007). In vitro-grown
plants were subjected to cold treatment for 10 min
(CS10), 30 min (CS30), and 24 h (CS24), and expres-
sion levels were compared to unstressed controls.
We selected these points to assess temporal dynamics
in calcium-mediated signalling and classify chosen
CIPKs in early and late-responsive genes involved
in cold adaptation.

In vitro plantlets of Solanum commersonii clone
cmml1T (accession PI243503), obtained from the
Inter-Regional Potato Introduction Station (Stur-
geon Bay, Wisconsin), were micropropagated. Plant-
lets were grown on Murashige and Skoog medium
containing 2% (w/v) sucrose and 0.8% (w/v) agar,
under controlled conditions (24 °C, 16/8 h light/
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dark, 3 000—4 000 lux) for four weeks. Eighteen
plants were subjected to cold treatment at 4 °C,
and samples were collected from six biological rep-
licates at each time point (CS10, CS30 and CS24).
Six additional plants maintained at 24 °C served
as controls. The sequences of the four ScCIPKs were
retrieved from Esposito et al. (2019), and gene-specific
primers were designed for RT-qPCR (ScCIPK1_FW
5-AAAAGGGAATGCGAGTAGGG-3', ScCIPK1_RV
5-CTTGGACGATAAAGAATGGGCT-3"; ScCIPK3_
FW 5'TGGAGCTAAAAGTAACGAGAGAA-3', Sc-
CIPK3_RV 5'CCTTTTGACTTCCGCACCTC-3};
ScCIPK23_FW 5'-TGTAGCCAAGTCCCAGGTTT-3,
ScCIPK23_RV 5-CCGGTGGACAGGTTCTTGTA-3}
ScCIPK24_FW 5'-CAATTTCCCGGCGACTTCTC-3,
ScCIPK24_RV 5'-TGATGTAGCGTGCAAAG-3') for
the expression analysis. For ScCIPK3, the primers
were designed to amplify both paralogs (ScCIPK3a
and ScCIPK3b), as their sequences are highly similar;
this approach allowed us to evaluate the overall CIPK3
transcriptional response rather than distinguish
between the two allelic forms. Gene expression was
normalised against elongation factor 1-a (EF1a, Nicot
et al. 2005) and analysed using the 2 24¢T method
(Livak & Schmittgen 2001), with results expressed
as log2 fold changes.

All ScCIPK genes were under-expressed after 10 min
of cold stress. However, ScCIPK3 transcripts (coming
from all isoforms) were induced after 30 min of cold
stress (CS30), showing a 2.0-fold increase compared
to the control (Figure 1). Previous research identi-
fied CIPK3 as a key mediator in the Ca®" signalling
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Figure 1. Gene expression profiles of ScCIPK1, ScCIPK3, ScCIPK23 and ScCIPK24 in Solanum commersonii (cmm1T
clone) under a time-course experiment (CS10 — 10 min, CS30 — 30 min and CS24H — 24 h) determined by RT-qPCR

Expression levels are shown relative to control plants maintained at 24 °C and were normalised to the housekeeping gene

elongation factor (EFla), according to the REST analysis; bars represent the mean + standard deviation (SD) of six biological

replicates (# = 6); P-value < 0.05 was considered statistically significant
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Figure 2. Schematic representation of the signal transduction mechanism in Solanum commersonii in response to cold

stress, where early activation of ScCIPK3 has been evidenced

pathway, acting as a hub for cross-talk during cold
stress in Arabidopsis. In particular, it plays a pivotal
role in the early response to stresses by phosphory-
lating transcription factors that are crucial for cold
adaptation (e.g., DREB1A/CBEF3), enabling the rapid
activation of downstream stress-responsive genes
such as RD29A and KIN1/KIN2 (Kim et al. 2003).

Previous results have shown that CIPK3 from
Arabidopsis works as molecular cross-talk between
abscisic acid (ABA) and stress-related gene expres-
sion, and more recent studies that have an impact
also on Mn homeostasis in cells (Kim et al. 2003).
Latz et al. (2013) showed that AtCIPK3 is one of the
earliest CIPK genes to be rapidly induced follow-
ing stress exposure in Arabidopsis. Although their
study did not demonstrate a direct role of AtCIPK3
in triggering the expression of other CIPK genes,
its early induction suggests a potential involvement
in initiating broader signalling cascades. A similar
hierarchical activation pattern may occur in S. com-
mersonii. Indeed, only after prolonged cold exposure
(24 h, CS24H) did all ScCIPK genes exhibit increased
expression, with fold-change values ranging from
1.8 for ScCIPK24 to 3.5 for ScCIPK23 (Figure 1).
However, S. commersonii CIPK3 paralogs may possess
different functionality, unrelated to those reported
for AtCIPK3. Moreover, more recent results suggest
that Arabidopsis CIPK3 has a more general function
in manganese homeostasis and ABA signalling rather
than direct in cold.

Initially, the abiotic stress (in this case, cold)
triggers an increase in intracellular Ca®*. This el-

evation is detected by CBL sensor relays. Indeed,
upon binding calcium, they can interact with sensor
responders (namely the CIPK proteins), activating
them (Sdnchez-Barrena et al. 2013). As reported
by Chaves-Sanjuan et al. (2014), CIPKs are activated
by phosphorylation from upstream kinases through
conformational changes in the activation loop, which
facilitate substrate interaction. Accordingly, the ac-
tivation of ScCIPK3 via CBL interaction may initiate
a phosphorylation cascade involving other ScCIPK
proteins. Such phosphorylation leads to the activation
of the signal transduction mechanism and ultimately
up-regulating cold stress-responsive genes (COR
genes), potentially responsible for the cold toler-
ance observed in the wild potato S. commersonii.
In conclusion, the transcriptional early activation
observed after 30 min of stress exposure suggests
a conserved mechanism shared with Arabidopsis,
where CIPK3 mediates ABA-dependent cold re-
sponses (Kim et al. 2003; Huang et al. 2011) (Figure 2).
According to the phylogenetic analysis of S. com-
mersonii CIPKs (Esposito et al. 2019), ScCIPK3a/b
cluster with AtCIPK3 within the intron-poor clade,
supporting their evolutionary and functional related-
ness. These findings underscore the prominent role
of ScCIPK3 in the signalling of S. commersonii during
cold stress at 4 °C. As the genome of this wild potato
species is available and is starting to be explored,
our preliminary results can lay the foundation for
future, more extensive studies aimed at defining
the signalling network in S. commersonii and its
remarkable cold tolerance.
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