Identification and functional analysis of the *HvWRKY1* gene associated with Qingke (*Hordeum vulgare* L. var. *nudum* Hook. f.) leaf stripe disease

Gang Jing¹, Youhua Yao^{1,2,3,4}, Likun An^{1,2,3,4}, Yongmei Cui^{1,2,3,4}, Yixiong Bai^{1,2,3,4}, Xin Li^{2,3,4}, Xiaohua Yao^{1,2,3,4}*, Kunlun Wu^{1,2,3,4}*

Citation: Jing G., Yao Y.H., An L.K., Cui Y.M., Bai Y.X., Li X., Yao X.H., Wu K.L. (2023): Identification and functional analysis of *HvWRKY1* gene associated with Qingke (*Hordeum vulgare* L. var. *nudum* Hook. f.) leaf stripe disease. Czech J. Genet. Plant Breed., 59: 263–277.

Abstract: To explore the role of WRKY transcription factors (TFs) in the resistance process of Qingke ($Hordeum\ vulgare\ L.\ var.\ nudum\ Hook.\ f.$), leaves of the leaf stripe disease-resistant variety Kunlun 14 and the susceptible variety Z1141 were sequenced by transcriptome sequencing (RNA-seq). A differentially expressed gene HvnWKRY1 was identified, and its disease-resistance function was preliminarily analysed. The result showed that the open reading frame (ORF) of the gene was 1 062 bp and encoded 354 amino acids. It contained the conserved WRKY domain (273–351) and belonged to the WRKY protein family. The phylogenetic tree results showed that HvWRKY1 was most closely related to $Hordeum\ vulgare\ L$. The WRKY family of Qingke, barley, maize and rice were divided into categories I, II, and III, among which HvWRKY1 was located in group III. Results of the quantitative real-time fluorescence PCR (qRT-PCR) showed that the expression of HvWRKY1 was significantly (P < 0.01) higher in leaf stripe infected leaves of Kunlun 14 than that of Z1141. In $Arabidopsis\ thaliana$ transformed with HvWRKY1, resistance to $Botrytis\ cinerea$ was enhanced. The RNA-seq analysis showed there were 824 differentially expressed genes (DEGs). Data of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated, that a plant-pathogen interaction pathway was enriched. This study is expected to provide a theoretical basis for further studies of functioning of the Qingke gene HvWRKY1 in resistance to the leaf stripe disease.

Keywords: barley leaf stripe disease; HvWRKY1 gene; Qingke; RNA-seq; transgenic

Qingke belongs to the wheat family Gramineae and is a variety of barley that can adapt to extreme harsh environments such as intense cold, hypoxia, low temperature, drought, and strong ultraviolet

light in the Qinghai-Tibet Plateau and is a symbol of Tibetan agricultural civilization (Zeng et al. 2018). It is therefore an important food, economic, and feed crop on the Qinghai-Tibet Plateau, with a cultiva-

Supported by Qinghai Provincial Natural Science Foundation Program-Innovation Team (2022-ZJ-902), National Barley Industry Technology System (CARS-05) and Key Research and Development (2019YFD1001701-4).

 $^{^1}$ Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China

²Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China

³Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China

⁴Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China

^{*}Corresponding authors: yaoxiaohua009@126.com; wklqaaf@163.com

[©] The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

tion history of about 3 500 years (Yao et al. 2018; Zeng et al. 2018).

The pathogen of barley leaf stripe disease is Vermidium vermicularis (Drechslera graminea (Rabenh.) Shoem), which belongs to the subphylum Hemiomyces. The sexual form is the *Pyrenophora* graminea S. Ito & Kurib, belonging to the subphylum Ascomycetes (Walters et al. 2012). Barley leaf stripe disease is mainly caused by seed fungus. During seed germination, the mycelium grows and infects the plant from the bud sheath to the young bud, invades each layer of tender leaf tissue successively, and finally invades the ear (Pecchioni et al. 1996; Si et al. 2020). In recent years, leaf stripe disease has rapidly developed into one of the main diseases in Qingke areas and northern spring wheat areas on the Qinghai-Tibet Plateau (Si et al. 2019). Leaf stripe disease has become one of the most serious diseases in barley cultivation, which seriously threatens the yield and quality of barley (Gatti et al. 1992). At present, the Rdg1a (Giese et al. 1993) and Rdg2a (Bulgarelli et al. 2004) genes have been mapped on the 2H and 7H chromosomes of barley, respectively. Yao et al. (2021a) previously obtained a series of antileaf stripe disease miRNAs (Hvu-miRNA-168-3p, Hvu-miRNA-159b, and Hvu-novel-91) and target genes (HvCYP450, HvRGA, HvLIN, and HvWRKY) by miRNA sequencing (miRNA-seq). Later, Yao et al. (2021b) found that the expression levels of *HvAGO1*, HvAGO2, and HvAGO4 were significantly increased under barley leaf stripe disease stress through AGO gene family analysis. No similar new genes related to barley leaf stripe disease have been reported.

The WRKY transcription factors (TFs) are one of the most important TFs in plants, and this gene family is mainly involved in plant biotic and abiotic stress responses (Khoso et al. 2022), of which biological stresses include attacks by pathogens, fungi, and viruses (Jiang et al. 2017). For example, in rice, knock-out of the WRKY22 gene resulted in increased susceptibility to rice blast. Over-expression of the WRKY22 gene increased rice resistance to rice blast (Piricularia oryzae) (Cheng & Wang 2014). Abiotic stresses include drought, saline-alkali, and oxidative stress (Khoso et al. 2022). For example, a WRKY10 gene related to drought resistance was found in wheat and was introduced into tobacco through the construction of an overexpression vector, which significantly improved the drought and salt tolerance of tobacco (Nicotiana rustica L.) (Wang et al. 2013). However, the response of the WRKY gene to barley leaf stripe disease has not been reported. Therefore, studying the signal transduction pathway and mechanism of *WRKYs* in barley is important.

In this study, a differentially expressed WRKY was identified in different resistant barley varieties infection with leaf stripe by RNA-seq. Then it was isolated from the leaves of varieties Kunlun 14 and Z1141 and named HvWRKY1. The structural, physiological, and biochemical characteristics of the HvWRKY1 protein sequence, and the consistency and evolutionary relationship between HvWRKY1 and other gramineous WRKY proteins were analysed. Subcellular localization of HvWRKY1 and expression pattern analysis of HvWRKY1 under the barley leaf stripe disease were conducted. The disease resistance of Arabidopsis transformed with the HvWRKY1 gene was increased upon infection with Botrytis cinerea. RNA-seq was performed using the leaves of wild and transgenic plants, and then quantitative real-time fluorescence PCR (qRT-PCR), gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. We identified various differentially expressed genes (DEGs) and some pathways related to disease resistance. This study provides a theoretical foundation for further research on the anti-leaf stripe disease function and disease-resistance mechanism of the Qingke HvWRKY1 gene.

MATERIAL AND METHODS

Test materials. The disease-resistant Qingke variety Kunlun 14 and the disease-susceptible Qingke variety Z1141 were provided by the Academy of Agriculture and Forestry Sciences, Qinghai University (Yao et al. 2021a).

Total RNA extraction and cDNA synthesis of barley streaking disease leaves. A plant RNA extraction kit (TaKaRa, Beijing, China) was used to extract RNA from the normal and susceptible leaves of Kunlun 14 and Z1141 under leaf stripe disease stress. The determination and detection of RNA concentration and purity referred to the method presented by Yao et al. (2021b). A cDNA synthesis kit (TaKaRa, Beijing, China) was used for reverse transcription of RNA to obtain cDNA, which was stored at -80 °C.

Isolation of the Qingke *HvWRKY1* gene. In the previous study, the barley resistant variety Kunlun 14 and susceptible variety Z1141 were infected with leaf stripe disease, then the normal and infected leaves were selected for RNA-seq by Novogene (Beijing, China; Accession No.: PRJNA872218). Based on the data, a DEG (gene ID: HORVU4Hr1G011590) was obtained

and annotated as *HvWRKY1*. Primer 5.0 was used to design the amplification primer *HvWRKY1*-F/R for the coding domain sequence (CDS) of this gene (Table 1), and PCR amplification was performed using leaf cDNA. The PCR amplification system and agarose gel electrophoresis detection followed the methods of Yao et al. (2021b). The target bands were recovered using the DiaSpin DNA Gel Extraction Kit (Sangon Biotech, Shanghai, China), and the target fragments were connected to the vector of pEasy-Blunt (TransGen, Beijing, China) and transformed into *E. coli* Trans-T1 receptive cells. Three positive clones were selected and sent to Sangon Biotech (Sangon Biotech, Shanghai, China) for sequencing.

Bioinformatics analysis of the Qingke HvWRKY1 **gene.** The CDS region of the *HvWRKY1* gene was extracted from the plant genome database Gramene (http://www.gramene.org/). The barley reference genome (ftp://ftp.ensemblgenomes.org/pub/release-63/ plants/fasta/hordeum_vulgare/dna) was used to obtain the promoter regions. Expasy Protparam (http:// www.expasy.org/tools/protparam.html) and Protscale (https://web.expasy.org/protscale/) were used to predict the physical and chemical properties of the hydrophilic/hydrophobic proteins. Online analysis software (http://www.cbs.dtu.dk/services/Net Phos/) was used to predict the protein phosphorylation site. Signal P 4.1 (http://www.Detaibio.com/tools/signal-peptide.html) and TMHMM-2.0 (http://www.cbs.dtu.dk/services/ TMHMM-2.0/) were used to predict the protein signal peptide and membrane structure. SMART (http:// SMART.embl-heidelberg.de/) was used to predict the domain. SPOMA (https://npsa-prabi.ibcp.fr/ cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma. html) and SWISS-MODEL (https://swissmodel.expasy.org/) were used to predict the secondary and tertiary structure of the HvWRKY1 protein. The online software PlantCARE was used for promoter region (http://bioinformatics.psb.ugent.be/webtools/ plantcare/html/) analysis. Using an NCBI (https:// www.ncbi.nlm.nih.gov/) query, Qingke HvWRKY1 homologous protein amino acid sequence was searched against other gramineous plants, and DNAMAN 6.0 software was used for multiple sequence alignment. In the barley genome (https://ensembl.gramene.org/ Hordeum_vulgare/Tools/Blast/Results?tl=qc1r7F SKnIRWWvEB-13415-2148596), there were seven WRKY family genes (gene ID: HORVU4HG0340900, HORVU5HG0433910, HORVU5HG0509460, HOR-VU2HG0192860, HORVU2HG0158690, HOR-VU2HG0194370, and HORVU4HG0410410) that were closely related to HvWRKY1. In the rice genome (https://rapdb.dna.affrc.go.jp/tools/blast/ run) there were seven WRKY family genes (gene ID: Os12g0597700-02, Os12g0597700-01, Os03g0741400, Os04g0605100, Os04g0287400, Os05g0129800, and Os02g0698800) that were closely related to HvWRKY1. In the maize genome (https://ensembl.gramene.org/Zea_mays/Transcript/Summa ry?db=core;g=Zm00001eb240750;r=5:162419477-162420949;t=Zm00001eb240750_T001;tl=rhqM QuFJ3Dj1nlvq-13460-2153714), there were seven WRKY family genes (gene ID: Zm00001eb051120, Zm00001eb278090, Zm00001eb061030, Zm00001eb154170, Zm00001eb335440, Zm00001eb370960, and Zm00001eb240750) that were closely related to HvWRKY1. MEGA7 software was used to construct the phylogenetic tree, and iTOL (https://itol.embl.de/itol.cgi) was used to illustrate the tree.

Subcellular localization of Qingke HvWRKY1. The primer *HvWRKY1*-GFP with a specific joint was

Table 1. Primers used in this study

Primer name		Primer sequence (5'→3')	Purpose
HvWRKY1	forward revers	ATCTGAGCGAGTTTTCTCTCCCATT TGCCTTGTGATAACTAATGTGTCAA	gene cloning
HvWRKY1	forward revers	CGATGCCTTAATTGCTACG TGTGATTGCCATTGCTGTA	qRT-PCR
TC139057	forward revers	GAAGGATGAGCAAAAGGCCCT GGCAGGCAGACTCATTTCTTCC	internal reference gene
HvWRKY1-GFP	forward revers	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCA TGGAGGAAGTGGAGGAGGCC GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACCA ACAAAGTTGATGCAT	subcellular localization vector

designed (Table 1), and the cDNA of Kunlun 14 leaf was used to construct the expression vector using the Gateway method. The recombinant plasmid HTC-PAST-WRKY1-GFP was subsequently used for the *Agrobacterium*-mediated tobacco transformation experiment. Fluorescent signals of green fluorescent protein (GFP) were detected using a laser confocal microscope (Nikon-A1R, Shanghai, China), following which the images were analysed.

Analysis of the expression pattern of Qingke HvWRKY1. According to the gene sequence of Qingke HvWRKY1 obtained by amplification, quantitative primers HvWRKY1-SF /SR were designed using Primer 6.0 (Table 1). The cDNA of the normal leaves and susceptible leaves of the Kunlun 14 and Z1141 were infected with barley leaf stripe disease, and TC139057 was used as an internal reference gene for qRT-PCR. The reaction system was based on the method presented by Yao et al. (2021b). The relative expression of the HvWRKY1 gene was calculated using the $2^{-\Delta\Delta Ct}$ method, and the significance was detected by SPSS 26.0 (Yokotani et al. 2018).

Transformation of HvWRKY1 gene into Arabidopsis and evaluation of its resistance to Botrytis cinerea. Gateway technology was used to construct a plant expression vector, and HvWRKY1 PCR primers with attB sites were designed, followed by the cloned primer sequence after the joint (Table 1). Using a KOD-FX high fidelity PCR kit (ToYoBo, Shanghai, China), the plasmid with the HvWRKY1 sequence was selected, and the primers with attB sites were used to amplify the cDNA sequence genes of the target genes. The PCR products were recovered by ethanol precipitation for the BP reaction (construct entry vector). The pdNOR ZEO intermediate vector plasmids identified as positive by recombinant PCR were mixed with the target vector pANIC6E plasmids for LR reaction (construct of expression vector). The transformation of Arabidopsis was performed by the *Agrobacterium*-mediated method, and the positive seedlings were identified by PCR.

Transgenic *Arabidopsis* gray mold resistance was identified by the gray mold spore infestation method, and the methods of *Botrytis cinerea* culture and inoculation and putrescine culture and infection were based on those reported by Scarboro et al. (2021).

RNA-seq and result analysis. Four weeks wild and transgenic *Arabidopsis* leaves after planting were used to sequenced by RNA-seq (Novogene, Beijing, China). DESeq 2 (1.20.0) software was used to conduct differential expression analysis. According to DESeq 2, the adjusted $P \le 0.05$ were assigned

as DEGs. GO enrichment analysis (http://wego.genomics.org.cn/cgi-bin/wego/index.pl) and KEGG pathway (www.kegg.jp/kegg/kegg1.html) were performed. Protein—protein interactions (PPIs) were predicted using STRING (http://version10.string-db.org/cgi/input.pl?UserId=dmZrtDdLzlbS&sessionId=AFEwAANBK10b&input_page_show_search=off). Online software (http://version10.string-db.org/cgi/input.pl?UserId=dmZrtDdLzlbS&sessionId=AFEwAANBK10b&input_page_show_search=on) was used to construct a protein interaction network.

RESULTS

Isolation and sequence analysis of the *HvWRKY1* gene. A target band of about 1 300 bp was amplified using the reverse transcription cDNA of total RNA from the leaves of Kunlun 14 and Z1141. The open reading frame (ORF) was 1 062 bp and encoded 354 amino acids (Figure S1 in Electronic Supplementary Material (ESM)). The sequence consistency between Kunlun 14 and Z1141 was 100%. Conserved domain prediction analysis of the amino acid sequences revealed that this protein had a typical WRKY domain (273–351) and annotated as WRKY1 belonging to WRKY protein family (Figures 1A).

The physicochemical properties analysis of WRKY1 showed that the molecular formula was $C_{1710}H_{2718}N_{516}O_{506}S_{19}$, the molecular weight was 39.21 kDa, the instability index was 59.52, the fat solubility index was 66.60, the theoretical isoelectric point was 9.88, and there were 25 negatively charged residues (Asp + Glu). The number of positively charged residues (Arg + Lys) was 48. The average hydrophobicity (GRAVY) of HvWRKY1 was -0.522. HvWRKY1 was a hydrophilic unstable basic protein with no transmembrane structure and no signal peptide (Figure 1B).

The prediction results of the secondary structure of WRKY1 showed that the secondary structure was mainly composed of random coil (53.82%), α -helix (28.90%), extended chain (13.60%), and β -corner (3.68%) (Figure 1C), indicating that the protein was dominated by random coils and α -helixes. These two secondary structures might play an important role in the function of proteins. The tertiary structure prediction results showed that the WRKY domain was located at the N-terminal of the amino acid sequence (Figures 1D). The Uniprot gene annotation showed that the protein was WRKY1, so the gene was named $H\nu WRKY1$.

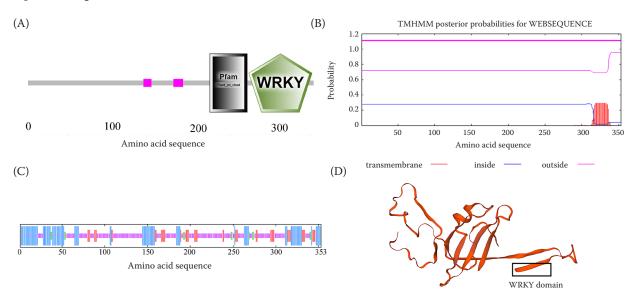


Figure 1. Protein analysis of the barley HvWRKY1 gene: protein domain (A), transmembrane structure (B), secondary structure prediction (C), three-level structure prediction (D)

Blue represents an α-helix, red represents an extended strand, green represents a β-turn, and orange indicates random curls

The *cis*-acting element analysis of *HvWRKY1* gene. PlantCARE was used to analyse the *cis*-acting elements of the *HvWRKY1* gene, and the results showed that it contained abundant *cis*-acting elements, such as seven ABREs, one MYB family recognition site, core promoter element and other expression elements. (Table 2).

Homology comparison and phylogenetic analysis of HvWRKY1 proteins. The WRKY1 amino acid sequence consistency among Qingke, barley (*Hordeum*

vulgare L.), wheat (Triticum dicoccoides), goat grass (Aegilops tauschii), brachypodium (Brachypodium distachyon), millet (Panicum hallii), foxtail millet (Setaria italica), and broomcorn millet (Panicum miliaceum L.) was 82.74%, 79.73%, 79.45%, 74.52%, 70.96%, 70.49%, and 69.40%, respectively. These sequences all had a conservative WRKY domain (Figure 2). The sequence consistency of the WRKY domain was 39.24%, 37.97%, 39.24%, 37.80%, 39.24%, 39.24%, and 38.75%. The phylogenetic tree results

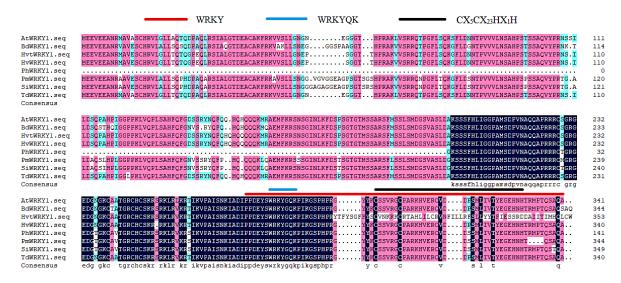


Figure 2. Multiple alignments of the HvWRKY1 and WRKY domains compared with other gramineae plants The red line represents the WRKY domain; the blue lines represents the WRKYGQK motif; and the black lines indicate $CX_5CX_{23}HX_1H$ zinc-finger motifs

Table 2. Structure of the cis-acting elements in the promoter region of the HvWRKY1 gene

Site name	Sequence	Starting position	Function
	CCGTCC	-153	
A-box	CCGTCC	+1 237	
	CCGTCC	+1 241	cis-acting regulatory element
	CCGTCC	-1257	
	CCGTCC	+1 270	
	ACGTG GACACGTACGT	+102 -187	
	CGCACGTGTC	+188	cis-acting element involved in the abscisic acid responsiveness
ABRE	ACGTG	+191	
	AACCCGG	-1488	
	GCCGCGTGGC	-1 561	
	ACGTG	+1 979	
AE-box	AGAAACTT AGAAACAA	-971 +1 352	part of a module for light response
ATCT-motif	AATCTAATCC	+1 204	part of a conserved DNA module involved in light responsiveness
	CAAT	+97	
	CAAAT	-255	
	CAAAT	-448	
	CAAAT	-510	common cis-acting element in promoter and enhancer regions
CAAT-box	CAAAT	-638	
	CAAAT	+672	
	CAAAT	+844	
	CAAAT	+1 680	
CAT-box	GCCACT GCCACT	+1 198 -1 884	
	CGTCA	+15	
	CGTCA	+785	
CGTCA-motif			cis-acting regulatory element involved in the MeJA-responsiveness
	CGTCA	-1 876	
GA-motif	ATAGATAA	-61	part of a light responsive element
	TACGTG	+101	
G-box	CACGTT	-190	cis-acting regulatory element involved in light responsiveness
	CACGTC	-1978	
GC-motif	CCCCCG	+1 046	enhancer-like element involved in anoxic specific inducibility
	CCCCCG	+1 654	
MRE	AACCTAA	-598	MYB binding site involved in light responsiveness
Sp1	GGGCGG	-1 049	
	GGGCGG	-1 504	light responsive element
	GGGCGG	+1 581	
	GGGCGG	+1 585	
TATA-box	TATA TACAAAA	+66 +388	core promoter element around -30 of transcription start

Table 2 to be continued

Site name	Sequence	Starting position	Function
	TATATAAATC	-420	
	ATTATA	+422	
	TATATAA	-423	
	TATATA	+424	
	ATATAA	+425	
	TATA	+426	
	ATTATA	+505	
	TATAA	-506	
	TATA	+507	
	TATA	+525	
	TATACA	-605	
TATA I	TATA	+607	core promoter element around -30 of transcription start
TATA-box	TATA	+661	
	ATATAA	+717	
	TATA	+718	
	TATAA	-741	
	TATA	+742	
	TATAAAA	-751	
	TATAAA	-752	
	TATAA	-753	
	TATA	+754	
	ATTATA	+1 321	
	TATAA	-1322	
	TATA	-1323	
TCCC-motif	TCTCCCT	+913	part of a light responsive element
TC-rich repeats	GTTTTCTTAC	-126	cis-acting element involved in defense and stress responsiveness
TCT-motif	TCTTAC	-126	part of a light responsive element
TGA-box	TGACGTAA	-782	part of an auxin-responsive element
	TGACG	-15	
	TGACG	-785	
TGACG-motif	TGACG	+1 149	cis-acting regulatory element involved in the MeJA-responsiveness
	TGACG	+1 850	
	TGACG	+1 876	
TGA-element	AACGAC	+1 359	auxin-responsive element
W box	TTGACC TTGACC	-1 090 +1 156	binding sites for the WRKY plant-specific transcriptional regulators

showed that the Qingke HvWRKY1 protein was most closely with barley, followed by wheat, while most distantly with broomcorn millet (Figure 3A). The WRKY protein sequences closely related to HvWRKY1 were obtained from the reference genomes of barley, rice, and maize, which were divided into three groups I,

II and III, among which group III consisted of three members, group II consisted of seven members, and group I consisted of 12 members (Figure 3B). Qingke HvWRKY1 belonged to group I. In addition, it was found that each group contained genes from barley, indicating that no significant gene loss event had

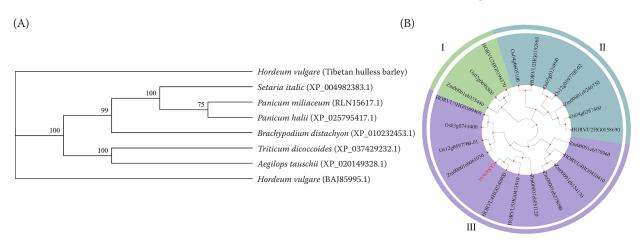


Figure 3. Phylogenetic analysis of the HvWRKY1 protein and other Gramineae plants: phylogenetic analysis of the HvWRKY1 protein and WRKY proteins of grasses (A), phylogenetic analysis of the HvWRKY1 protein and WRKY proteins that are closely related to barley, rice, and maize (B)

Green indicates group I; blue indicates group II, and purple indicates group III

occurred after the differentiation of barley, which confirmed that WRKY was a gene family with important functions in plant growth and development and that it was relatively evolutionarily conserved.

Subcellular localization of HvWRKY1. To study the specific location of the HvWRKY1 protein at the subcellular level, the *Agrobacterium* EHA105 carrying HvWRKY1 fusion GFP (HPT-PAST-HvWRKY1-GFP) was transformed into tobacco leaves through transient transformation. The fluorescence position was observed by a confocal laser-scanning microscope. The HPT-PAST-CK empty carrier was used as the control (Figure 4). The leaves transformed with the

HPT-PAST-CK empty carrier showed strong green fluorescence in the nucleus, cytoplasm, and cell membrane, while the leaves transformed with HPT-PAST-HvWRKY1-GFP showed green fluorescence signals in the nucleus and cell membrane (Figure 4). These results indicated that the HvWRKY1 protein was located in the nucleus and cell membrane.

The expression of *HvWRKY1* gene under Qingke leaf stripe disease. To study the expression of the *HvWRKY1* gene in different disease-resistant Qingke varieties under leaf stripe disease stress, RNA-seq (Accession No.: PRJNA872218) and qRT-PCR were used to evaluate the leaves of the resistant variety

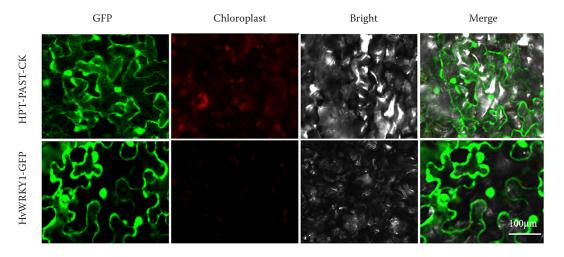
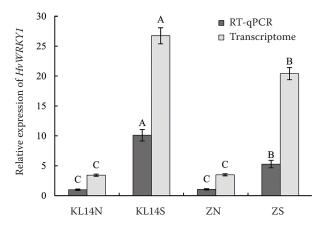
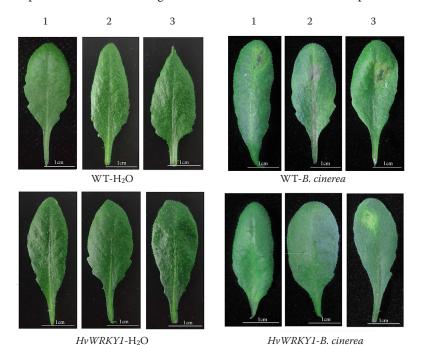


Figure 4. Subcellular localization of HvWRKY1
HPT-PAST-CK – no load; the excitation wavelength of the laser confocal microscope was set to green fluorescent protein (GFP),
448 nm (green); chloroplasts, 400 nm (red)




Figure 5. The relative expression of HvWRKY1 KL14N – Kunlun 14 without Qingke leaf stripe disease; KL14S – Kunlun 14 with Qingke leaf stripe disease; ZN – Z1141 without Qingke leaf stripe disease; ZS – Z1141 with Qingke leaf stripe disease; different capital letters represent extreme significance (P < 0.01)

Kunlun 14 and the susceptible variety Z1141 before and after infection with P. graminea. The results showed that the expression level of the HvWRKY1 gene in the infected leaves of Kunlun 14 was 7.81 and 10.10 times significantly higher than that in the normal leaves of Kunlun 14 (P < 0.01). The expression of the HvWRKY1 gene in the infected leaves of susceptible variety Z1141 was 5.84 times and 4.94 times significantly higher than that in the normal leaves of Z1141 (P < 0.01) (Figure 5). Meanwhile, the expression level of this gene in the infected leaves

of Kunlun 14 was significantly higher than that in the infected leaves of Z1141 (P < 0.01). It is speculated that HvWRKY1 plays an important positive regulatory role in the resistance of Qingke to leaf stripe disease.

Function of *Botrytis cinerea* disease resistance in *Arabidopsis* transformed with *HvWRKY1*. Transgenic *Arabidopsis* was used to identify *Botrytis cinerea* disease resistance (Figure 6). Wild-type *Arabidopsis* plants subjected to water treatment (WT-H₂O) grew normally and did not produce disease spots, while the plants in the wild-type *Botrytis cinerea* treatment (WT-*B. cinerea*) produced obvious disease spots. The transgenic *Arabidopsis* plants subjected to water treatment (*HvWRKY1*-H₂O) also grew normally and produced disease spots, while the transgenic *Arabidopsis Botrytis cinerea* treatment (*HvWRKY1-B. cinerea*) plants produced no or minor disease spots compared with WT-*B. cinerea*.

RNA-seq and differential expression gene analysis of transgenic *Arabidopsis*. The *HvWRKY1* gene was transferred into *Arabidopsis* for the RNA-seq of wild and *HvWRKY1* transferred *Arabidopsis* showed there was 824 DEGs were identified, in which 748 genes were down-regulated and 76 genes were up-regulated in transgenic *Arabidopsis* compared with the wild (Figure 7). In the KEGG analysis of the DEGs, 22 genes involved in the plant-pathogen interaction pathway were identified, and they were down-regulated in the transgenic *Arabidopsis* (Figure 9). Also, we found the expression levels of WRKY transcription factors (WRKY22 and WRKY33) and MYB

dopsis for disease resistance 1, 2, 3 – No. of replicates; WT-B. cinerea – wild-type Botrytis cinerea treatment; WT-H₂O – wild-type water treatment; HvWRKY1-B. cinerea – transgenic Arabidopsis Botrytis cinerea treatment; HvWR-

KY1-H2O - transgenic Arabidopsis water

treatment

Figure 6. Evaluation of transgenic Arabi-

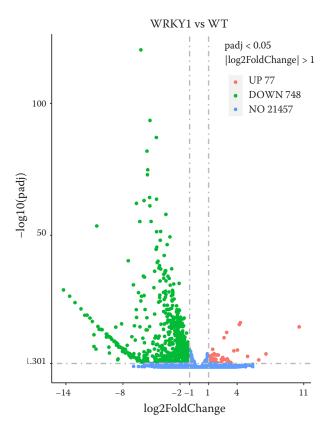


Figure 7. Differential gene volcano map
The abscissa is the log2FoldChange value, the ordinate is
-log10padj or -log10pvalue, and the blue dotted line indicates
the threshold line of the differential gene screening criteria

transcription factor (MYB30) were higher in wild than in the *HvWRKY1* transfered *Arabidopsis* (Figure 8).

GO enrichment was used to explore the functional classes of the annotated genes and classify 824 known annotated proteins. The 30 GO enrichments indicated that these genes fell into three broad categories: biological processes, cell components, and molecular functions (Figure S2 in ESM). In biological processes,

signal transduction (GO: 0007165, GO: 003052) and cell stimulus response (GO: 0051716) were significantly enriched (P < 0.05), including 28 genes. The cellular components of the extracellular region (GO: 0005576) and extracellular body (GO: 0048046) were significantly enriched, including six and five genes. The molecular functions of transcriptional regulatory activity (GO: 0140110), DNA-binding transcription factor activity (GO: 0003700) were significantly enriched, containing 52 and 50 genes, respectively (Figure 10A). The KEGG enrichment analysis revealed that 824 DEGs were involved and significantly enriched in five pathways: plant-pathogen interaction, MAPK signaling pathway, α-linolenic acid metabolism, and plant hormone signal transduction. Among the top-20 enriched KEGG pathways, one plant-pathogen interaction pathway was identified, comprising 22 genes (Figure 10B). These included calmodulin CML23 (AT1G66400.1), CML37 (AT5G42380.1), CML38 (AT1G7665.1), Calcium-dependent protein kinases CPK15 (AT4G2194.2), CPK28 (AT5G6622.1), CPK29 (AT1G76040.2), and CPK32 (AT3G57530.1). In particular, there were WRKY transcription factors (WRKY22 and WRKY33) and MYB transcription factors (MYB30), and WRKY22, WRKY33, and MYB30 play an important role in plant disease resistance. These results provide valuable information for the study of the resistance mechanism of HvWRKY1.

Analysis of the protein interaction network. In the KEGG pathway enrichment analysis of the RNA-seq data, 22 genes significantly enriched in the plant-pathogen interaction pathway were selected. Genes interacting with these genes were then identified from the protein-protein interaction (PPI) results of the RNA-seq analysis, from which a protein interaction network analysis was constructed (Figure 11). In this protein interac-

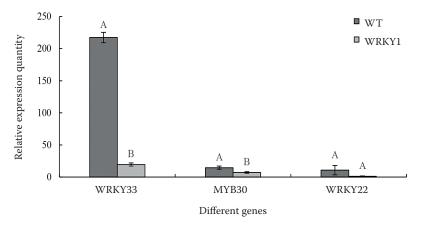
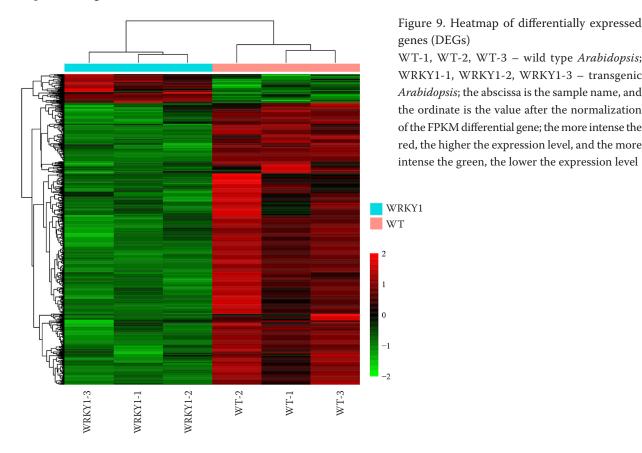



Figure 8. Relative expression levels of WRKY22, WRKY33 and MYB30 in overexpressed *Arabidopsis* and wild type *Arabidopsis*.

WT – wild type Arabidopsis; WRKY1 – transgenic Arabidopsis; different capital letters represent extreme significance (P < 0.01)

tion network, a total of six resistance genes were found. They were SYP121 (AT3G11820.1), NAC062 (AT3G49530.1), AT1G78410, XLG2 (AT4G34390.1),

PAD3 (AT3G26830.1), and APK2A (AT1G14370.1), respectively, in which there were three transcription factors, namely MYB51 (AT1G18570.1), SCL13

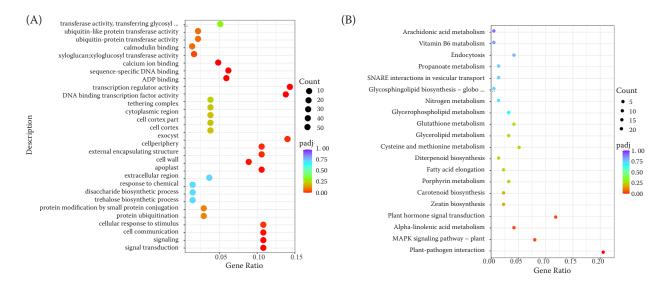
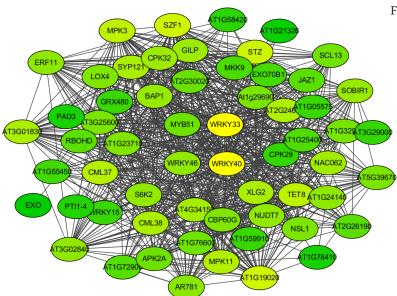



Figure 10. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 824 differentially expressed genes (DEGs): GO enrichment bubble graph; the *Y* axis is the GO term, and the *X* axis is the enrichment factor (A), KEGG enrichment bubble graph; the *Y* axis is the enrichment pathway and the *X* axis is the enrichment factors (B) The bubble colour represents the *P*-value, the redder the colour is, the smaller the *P*-value is, the higher the enrichment degree is, and the size of the bubble indicates the quantity

Figure 11. Prediction of protein interactions

(AT4G17230.1) and ERF11 (AT1G28370/1), and four WRKY protein (WRKY15, WRKY33, WRKY40, and WRKY46), and MYB51 interacted strongly with the WRKY transcription factors.

DISCUSSION

Studies have shown that WRKY proteins belong to the plant TF family and are involved in regulating plant stress resistance (Bahrini et al. 2011). The WRKY domain consists of 60 highly conserved amino acids, and its N-terminal is a highly conserved heptapeptide sequence WRKYGQK, which is the reason for the name WRKY. The C-end is the conservative zinc-finger structure of C2H2 (CX4-5CX22-23HX1H) or C2HC (C-X7-C-X23-HX1-C) (Pecchioni et al. 1996; Rushton et al. 2010). The specific recognition site of WRKY transcription factors is the W-box(T)(T)TGAC(C/T), the core sequence of which is TGAC, which is also the minimum recognition site required for specific DNA binding (Rushton et al. 2012). The HvWRKY1 gene isolated in this study had a typical WRKY domain (amino acids 273–351) and was located in the nucleus and cell membrane, conforming to the characteristics of transcription factors, so this gene belongs to the WRKY gene family. The conserved region of WRKY transcription factor binds to the upstream promoter region of the gene to regulate the expression of downstream genes, enhancing or inhibiting biological and abiotic stress responses (Eulgem et al. 2000). Therefore, the conserved WRKY domain may play an important role in regulating the expression of functional genes. In this study, homology analysis was conducted between the highland barley *HvWRKY1* domain and seven other gramineous plants, and the consistency of the domain was 76.68%. Therefore, it is speculated that the WRKY domain of *HvWRKY1* plays an important role in the resistance of Qingke to leaf stripe disease.

Promoters can regulate DNA sequences to guide RNA polymerase to initiate gene transcription (Hoskins et al. 2011), while the epigenetic characteristics of regulatory sequences can enable different transcription factors and regulatory proteins to be aggregated into cis-element patterns (CRM: cisregulatory module), thus determining their different functions (van Leeuwen et al. 2005). In addition, transcription factors can bind to cis-acting elements in the promoter regions of eukaryotic genes (Ulmasov et al. 1997). Therefore, identification and analysis of cis-acting elements in the promoter region can further elucidate the regulatory mechanism of gene expression molecules. Cis-regulatory elements control a variety of biological processes, such as growth and development, hormonal responses, and abiotic and biological stresses. Zhu et al. (2016) demonstrated that AtWRKY1 in the guard cells of Arabidopsis is a negative regulator in abscisic acid (ABA) signaling that is localized in the nucleus and can bind to the W-box domain in the promoter of MYB2, ABCG40, DREB1A, and ABI5 to control their transcription in response to drought stress or ABA. Turck et al. (2004) used chromatin immunoprecipitation (ChIP) technology in cultured cells and show that parsley

(Petroselinum crispum) WRKY1 protein binds to the W boxes of its native promoter as well as to that of PcWRKY3 and the defense-related PR10-class marker gene Pathogenesis-Related1-1 (PcPR1-1). Chen et al. (2013) that the expression of WRKY DNA-binding protein 8 (WRKY8) was down-regulated after infection of crucifer-infecting tobacco mosaic virus (TMV-cg) in Arabidopsis. However, WRKY8 regulates the expression of ABI4 to participate in the defense response of TMV-cg under ABA treatment, and can mediate ABA signal transduction during the interaction between TMV-cg and Arabidopsis. In this study, through the analysis of the cis-element of HvWRKY1 promoter, it was found that there were two W-boxes in its own promoter, and the cis-acting element was the specific binding site of WRKY. In parsley, W-box elements were also bound in the promoter of PcWRKY3 gene, so the results of this study were similar to the results. AtWRKY1 can bind to the W-box domain in the promoter of other genes. HvWRKY1 also includes seven ABRE elements, which are associated with ABA; There are 26 TATA elements that may have transcriptional activation roles. In conclusion, it is speculated that in this study, HvWRKY1 can also bind to its own W-box element and may be involved in controlling ABA transcription.

Transcriptional regulation is a key biological process that enables cells or organisms to respond to a variety of intracellular and extracellular signals during development and determines cell characteristics (Casamassimi & Ciccodicola 2019). Transcription factors are DNA-binding proteins that regulate gene expression by interacting with the pre-initiation complex of transcription and binding to cis-regulatory elements present in each gene promoter region in a sequence-specific manner (Manna et al. 2021). In this study, GO results showed that transcriptional regulatory activity (GO: 0140110) was significantly enriched in 52 genes, and DNA-binding transcription factor activity (GO: 0003700) was significantly enriched in 50 genes. Therefore, this gene may cause changes in transcriptional regulatory activity and DNA-binding transcription factor activity in Arabidopsis, and it is speculated that HvWRKY1 may play a similar role in resistance to leaf stripe disease in Qingke. Frerigmann et al. (2015) showed that the transcription factors MYB34, MYB51, and MYB122 are precursors of plants protectin that protect against infection by specific pathogens and regulate indole-3-acetaldoxime (IAOx). In Botrytis cinerea, Wang et al. (2022) found that BcWRKY33A directly activated the expression of BcMYB51-3 and downstream IGS biosynthetic genes, thereby improving plant tolerance to Botrytis cinerea infection. In Arabidopsis, the role of AtMYB44 in salicylic acid (SA) and jasmonic acid (JA) -mediated defense responses was realized through direct regulation of WRKY70 expression (Shim & Choi 2013). Zhu et al. (2022) isolated a new R2R3 type MYB transcription factor *GhODO1* from cotton (cotton plum). After the gene was knocked out, cotton resistance to Verticillium dahliae was reduced. However, overexpression of this gene increased resistance to Verticillium dahliae in Arabidopsis. In addition, MYB and WRKY transcription factors were found to interact with each other in protein interaction prediction of transgenic Arabidopsis. In this study, according to KEGG results in the transcriptus, there were 22 resistance genes involved in the pathway of plant-pathogen interaction. PPI results using Arabidopsis as the interaction model showed that there was interaction between resistance proteins and WRKY proteins, and MYB51 had strong interaction with WRKY33, WRKY40 and WRKY46 proteins. It is speculated that WRKY transcription factor and MYB transcription factor interact with each other in Qingke, and jointly regulate the disease resistance pathway of Qingke.

WRKY transcription factors can directly regulate the expression of resistance genes or overregulate the interaction between the encoding proteins of resistance genes and other proteins to achieve a resistance response. Deslandes et al. (2003) found that binding of the W-box element of the promoter of the RRS1-R gene in Arabidopsis with the WRKY transcription factors could increase gene expression, thereby producing a resistance response to bacterial wilt. Huang et al. (2016) showed that six WRKY transcription factors (SolyWRKY41 SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and Soly-WRKY81) in tomato could bind to the W-box in the promoters of other genes, thereby influencing the interaction between resistance proteins and MAPK proteins to positively or negatively regulated tomato yellow leaf curl disease. Zeng et al. (2009) overexpressed the *OsWRKY45-2* gene in rice and found that it could enhance disease resistance to M. grisea. In this study, qRT-PCR results showed that the expression of HvWRKY1 gene in the resistant variety Kunlun 14 and the susceptible variety Z1141 was extremely significantly increased under leaf stripe disease stress, and the expression of HVWRKY1 gene in the resist-

ant variety Kunlun 14 was extremely significantly higher than the susceptible variety Z1141. At the same time, HvWRKY1 gene overexpression analysis showed that the expression pattern of HvWRKY1 gene was similar to that of qRT-PCR, and the expression level of HvWRKY1 gene was higher than that of qRT-PCR. Similar to the results of Zeng et al. (2009), it is speculated that this gene plays a positive regulatory role in the anti-leaf stripe disease pathway of Qingke. Therefore, it is speculated that HvWRKY1 gene had a similar action mechanism in Qingke against leaf stripe disease, but its specific action mechanism needs to be further study.

Acknowledgement. We would like to thank Accdon (www. accdon.com) for editing this manuscript. We are grateful to the reviewers for their valuable comments.

REFERENCES

- Bahrini I., Ogawa T., Kobayashi F., Kawahigashi H., Handa H. (2011): Overexpression of the pathogen-inducible wheat *TaWRKY45* gene confers disease resistance to multiple fungi in transgenic wheat plants. Breeding Science, 61: 319–326.
- Bulgarelli D., Collins N.C., Tacconi G., Dellaglio E., Brueggeman R., Kleinhofs A., Stanca A.M., Valè G. (2004): Highresolution genetic mapping of the leaf stripe resistance gene *Rdg2a* in barley. Theoretical and Applied Genetics, 108: 1401–1408.
- Casamassimi A., Ciccodicola A. (2019): Transcriptional regulation: Molecules, involved mechanisms, and misregulation. International Journal of Molecular Sciences, 20: 1281.
- Chen L., Zhang L., Li D., Wang F., Yu D. (2013): WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in *Arabidopsis*. Proceedings of the National Academy of Sciences of the USA, 110: 1963–1971.
- Cheng H.T., Wang S.P. (2014): WRKY-type transcription factors: A significant factor in rice-pathogen interactions. Scientia Sinica Vitae, 44: 784–793.
- Deslandes L., Olivier J., Peeters N., Feng D.X., Khounlotham M., Boucher C., Somssich I., Genin S., Marco Y. (2003): Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the USA, 100: 8024–8029.
- Eulgem T., Rushton P.J., Robatzek S., Somssich I E. (2000): The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5: 199–206.
- Frerigmann H., Glawischnig E., Gigolashvili T. (2015): The role of *MYB34*, *MYB51* and *MYB122* in the regula-

- tion of camalexin biosynthesis in *Arabidopsis thaliana*. Frontiers in Plant Science, 6: 654.
- Gatti A., Rizza F., Delogu G., Terzi V., Porta-Puglia A., Vannacci G. (1992): Physiological and biochemical variability in a population of *Drechslera graminea*. Journal of Genetics & Breeding, 46: 179–186.
- Giese H., Holm-Jensen A.G., Jensen H.P., Jensen J. (1993): Localization of the laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theoretical and Applied Genetics, 85: 897–900.
- Hoskins R.A., Landolin J.M., Brown J.B., Sandler J.E., Takahashi H., Lassmann T., Yu C., Booth B.W., Zhang D., Wan K.H., Yang L., Boley N., Andrews J., Kaufman T.C., Graveley B.R., Bickel P.J., Carninci P., Carlson J.W. Celniker S.E. (2011): Genome-wide analysis of promoter architecture in *Drosophila melanogaster*. Genome Research, 21: 182–192.
- Huang Y., Li M.Y., Wu P., Xu Z.S., Que F., Wang F., Xiong A.S. (2016): Members of WRKY group III transcription factors are important in TYLCV defense signaling pathway in tomato(*Solanum lycopersicum*). BMC Genomics, 17: 788.
- Jiang J., Ma S., Ye N., Ming J., Zhang J. (2017): WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 59: 86.
- Khoso M.A., Hussain A., Ritonga F.N., Ali Q., Channa M.M., Alshegaihi R.M., Meng Q., Ali M., Zaman W., Brohi R.D., Liu F., Manghwar H. (2022): WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. Frontiers in Plant Science, 13: 1039329.
- Manna M., Thakur T., Chirom O., Mandlik R., Deshmukh R., Salvi P. (2021): Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 172: 847–868.
- Pecchioni N., Faccioli P., Toubia-Rahme H., Valè G., Terzi V. (1996): Quantitative resistance to barley leaf stripe (*Pyrenophora graminea*) is dominated by one major locus. Theoretical and Applied Genetics, 93: 97–101.
- Rushton D.L., Tripathi P., Rabara R.C., Lin J., Ringler P., Boken A.K., Langum T.J., Smidt L., Boomsma D.D., Emme N.J., Chen X.F., Finer J.J., Shen Q.J., Rushton P.J. (2012): WRKY transcription factors: Key components in abscisic acid signaling. Plant Biotechnology Journal, 10: 2–11.
- Rushton P.J., Somssich I.E., Ringler P., Shen Q.J. (2010): WRKY transcription factors. Trends Plant Science, 15: 247–258.
- Scarboro C.G., Ruzsa S.M., Doherty C.J., Kudenov M.W. (2021): Quantification of gray mold infection in lettuce using a bispectral imaging system under laboratory conditions. Plant Direct, 5: e00317.

- Shim J.S., Choi Y.D. (2013): Direct regulation of *WRKY70* by *AtMYB44* in plant defense responses. Plant Signaling & Behavior, 8: e20783.
- Si E., Meng Y., Ma X., Li B., Wang J., Ren P., Yao L., Yang K., Zhang Y., Shang X., Wang H. (2019): Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation of *Pyrenophora graminea*, the causative agent of barley leaf stripe. European Journal of Plant Pathology, 154: 227–241.
- Si E., Meng Y., Ma X., Li B., Wang H. (2020): Genome resource for barley leaf stripe pathogen *Pyrenophora graminea*. Plant Disease, 104: 320–322.
- Turck F., Zhou A., Somssich I.E. (2004): Stimulus-dependent, promoter-specific binding of transcription factor *WRKY1* to Its native promoter and the defense-related gene *PcPR1-1* in Parsley. Plant Cell, 16: 2573–2585.
- Ulmasov T., Hagen G., Guilfoyle T.J. (1997): *ARF1*, a transcription factor that binds to auxin response elements. Science, 276: 1865–1868.
- van Leeuwen F., Steensel B.V. (2005): Histone modifications: From genome-wide maps to functional insights. Genome Biology, 6: 113.
- Walters D.R., Avrova A., Bingham I.J., Burnett F.J., Fountaine J., Havis N.D., Hoad S.P., Hughes G., Looseley M., Oxley S.J.P., Renwick A., Topp C.F.E., Newton A.C. (2012): Control of foliar diseases in barley: towards an integrated approach. European Journal of Plant Pathology, 133: 33–73.
- Wang C., Deng P., Chen L., Wang X., Ma H., Hu W., Yao N., Feng Y., Chai R., Yang G., He G. (2013): A wheat WRKY transcription tactor *TaWRKY10* confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE, 8: e65120.
- Wang H.Y., Zheng Y.S., Xiao D., Li Y., Liu T.K., Hou X.L. (2022): *BcWRKY33A* enhances resistance to *Botrytis cinerea* via activating *BcMYB51-3* in non-heading Chinese Cabbage. International Journal of Molecular Sciences, 23: 8222
- Yao X.H., Wu K.L., Yao Y.H., Bai Y.X., Ye J.X., Chi D.Z. (2018): Construction of a high-density genetic map: Gen-

- otyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 155: 37.
- Yao X.H., Wang Y., Yao Y.H., Bai Y.X., Wu K.L., Qiao Y.M. (2021a): Identification microRNAs and target genes in Tibetan hulless barley to BLS infection. Agronomy Journal, 113: 2273–2292.
- Yao X.H., Wang Y., Yao Y.H., An L.K., Bai Y.X., Li X., Wu K.L., Qiao Y.M. (2021b): Use of gene family analysis to discover argonaut (AGO) genes for increasing the resistance of Tibetan hull-less barley to leaf stripe disease. Plant Protection Science, 57: 226–239.
- Yokotani N., Shikata M., Ichikawa H., Mitsuda N., Ohme-Takagi M., Minami E., Nishizawa Y. (2018): *OsWRKY24*, a blast-disease responsive transcription factor, positively regulates rice disease resistance. Journal of General Plant Pathology, 84: 85–91.
- Zeng T., Liu H.B., Qiu D.Y., Zhou Y., Li X.H., Xu C.G., Wang S.P. (2009): A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant and Cell Physiology, 151: 936–948.
- Zeng X., Guo Y., Xu Q., Mascher M., Guo G., Li S., Mao L., Liu Q., Xia Z., Zhou J., Yuan H., Tai S., Wang Y., Wei Z., Song L., Zha S., Li S., Tang Y., Bai L., Zhuang Z., He W., Zhao S., Fang X., Gao Q., Yin Y., Wang J., Yang H., Zhang J., Henry R.J., Stein N., Tashi N. (2018): Origin and evolution of Qingke barley in Tibet. Nature Communications, 9: 5433–5444.
- Zhu Q., Li C., Zhang W. (2016): *WRKY1* regulates stomatal movement in drought-stressed *Arabidopsis thaliana*. Plant Molecular Biology, 91: 53–65.
- Zhu Y., Hu X., Wang P., Wang H., Ge X., Li F., Hou Y. (2022): *GhODO1*, an R2R3-type MYB transcription factor, positively regulates cotton resistance to *Verticillium dahliae* via the lignin biosynthesis and jasmonic acid signaling pathway. International Journal of Biological Macromolecules, 201: 580–591.

Received: February 10, 2023 Accepted: April 13, 2023 Published online: June 15, 2023