# Molecular mechanism of drought stress tolerance in barley (*Hordeum vulgare* L.) via a combined analysis of the transcriptome data

Mostafa Alamholo¹, Alireza Tarinejad²\*

**Citation:** Alamholo M., Tarinejad A. (2023): Molecular mechanism of drought stress tolerance in barley (*Hordeum vulgare* L.) via a combined analysis of the transcriptome data. Czech. J. Genet. Plant Breed., 59: 76–94.

**Abstract:** One of the main issues addressed by phytology in recent years has been plant tolerance mechanisms for abiotic stress. No combined analysis has been made to identify the genes involved in drought stress tolerance. The meta-analysis of microarray data related to drought stress was analysed by the R software packages and showed 3 029 upregulated genes and 3 017 downregulated genes. The upregulated genes were mostly related to the drought tolerance protein, abiotic stress response, and the Cys2His2 Zinc Finger Transcription Factor (C2H2 zinc finger TF). The downregulated genes were mainly related to the late embryogenesis abundant protein, abiotic stress response, and the basic leucine zipper (bZIP) TF. The common gene ontology (GO) terms in the upregulated and downregulated genes were mainly related to the metabolic process, response to stimulus, cellular metabolic process, and photorespiration. The up and down meta-differential expressed genes (meta-DEGs) mainly belonged to the those following Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including: the biosynthesis of secondary metabolites, plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signalling pathway, and RNA degradation. Moreover, in the upregulated and downregulated genes, the TFs with a high percentage mainly belonged to the Teosinte branched1/Cincinnata/proliferating cell factor (TCP), basic helix loop--helix (bHLH) and bZIP. Next, the hub upregulated genes were mainly related to the thiamine biosynthesis protein thiC, 4-hydroxyphenylpyruvate dioxygenase, ribose-5-phosphate isomerase precursor and heat shock protein. The hub downregulated genes were mainly associated with the elongation factor Ts, aldehyde dehydrogenase, and trigger factor. Finally, the data from the present meta-analysis were compared with previous studies on the qRT-PCR results and their up and down expressions were confirmed. Based on the findings of the current study, novel insights into the drought stress molecular response can be provided and various candidate genes can be introduced for barley drought stress tolerance breeding.

Keywords: bioinformatics; biological process; drought stress; hub genes; meta-analysis; transcription factor

**Abbreviations:** thiC – thiamine biosynthesis protein; TFs – transcription factors; GO – gene ontology; MAPK – mitogen activated protein kinase; KEGG – Kyoto Encyclopedia of Genes and Genomes; DEGs – differential expressed genes); AP2/ERF – APETALA 2/ethylene-responsive element binding factor; HvDRF1 – dehydration-responsive factor 1; HVA1 – *Hordeum vulgare* aleurone 1; Dhns – dehydrins; ABA – abscisic acid; SnRK2 – SNF1-related kinase 2; PP2C – protein phosphatases 2C; PPI – protein-protein interaction; MCC – maximal clique centrality; JA – jasmonic acid; ET-Ts – elongation factor Ts; bHLH – basic helix loop-helix; EBF1 – EIN3-binding F-box protein 1; LEA – late embryogenesis abundant protein; bZIP – basic leucine zipper; JAZ – jasmonate ZIM-domain; PYR/PYL – pyrabactin resistance/pyrabactin resistance-like; PABP1 – polyadenylate-binding protein 1; *Dof* – NA binding with one finger; TCP – Teosinte branched1/Cincinnata/proliferating cell factor; SBP – squamosa promoter binding protein

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

<sup>&</sup>lt;sup>1</sup>Department of Biotechnology, Institute of Science and Modern Technology, Rojava University, Qamishlo, Syria

<sup>&</sup>lt;sup>2</sup>Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran \*Corresponding author: tarinejad@yahoo.com

Drought as a critical global warming-related stress factor is considered as a threat for plant biodiversity that affects crop growth (Bailey-Serres et al. 2019). Worldwide climatic changes along with temperature increases and rainfall decreases necessitate the need for the development of stress-tolerant cultivars, especially for main crop species (Mir et al. 2012). Barley (Hordeum vulgare L.) is the fourth most cultivated cereal crop and it is distributed under different climates and is known to keep its growth at higher concentrations of NaCl (200–300 mM) for a minimum of 3 weeks (Roy 2016). Most genome-wide transcriptional profiling studies on drought stress in barley have focused on the response of vegetative organs. The response of the spike transcriptome to drought stress has been largely overlooked even though drought at the reproductive stage causes the greatest yield loss (Janiak et al. 2019).

Meta-analysis approaches have recently started to be applied to genetic expression studies in the medical, plant and other areas of research, which were shown to consider the sampling variation, and detect candidate genes that are uniformly differentially expressed in studies (Tseng et al. 2012). Microarray technology and transcriptional profiling has caused a dramatic advance in understanding the plant molecular response under abiotic stress conditions with regard to gene expression (Daryani et al. 2022). For interpreting the genome functional elements, understanding the transcriptome is important, which is mainly aimed at determining the gene transcriptional structure, cataloguing all the species of the transcripts and quantifying the expression levels of each transcript under different conditions (Benny et al. 2019). The first microarray study of the barley drought stress response at the transcriptome level was reported on the Totkak cultivar (Ozturk et al. 2002). The authors found that the differential upregulation of several stress-responsive genes were related to the leaf and root tissues, including the auxin-induced protein, jasmonate-induced proteins, metallothionein-like proteins, actin binding protein, protein phosphatases, dehydrins and late embryogenesis abundant protein, and the downregulated genes are mostly related to the photosynthesis metabolism including the rubisco small-chain precursor, chlorophyll a/b-binding proteins and ribulose-biphosphate carboxylase activase.

Transcription factors (TFs) control the expression of genes and help plants cope better with environmental stress (Cominelli et al. 2013). The APETALA 2/ethylene-responsive factor is an element binding

factor (*AP2/ERF*) that controls the gene expression when abiotic stress reactions occur and is an important family of TFs (Mizoi et al. 2012). In barley, the increase in the *AP2/ERF* gene, dehydration-responsive factor 1 (*HvDRF1*) by the drought stress activated *Hordeum vulgare* aleurone 1 (*HVA1*) gene which is a responsive gene to drought stress (Xue & Loveridge 2004). Dehydrins (*Dhns*) are a large group of genes associated with drought stress where *Dhns* including 1-11 and *Dhn13* in barley were found to be upregulated by drought stress (Rodriguez et al. 2005). Likewise, Tommasini et al. (2008) proved the upregulation of the group of dehydrins including *Dhn1*, *Dhn2*, *Dhn3*, *Dhn4*, *Dhn7*, *Dhn9* and *Dhn10* by drought stress in barley.

The gene ontology (GO) analysis indicates that mitogen activated protein kinase (MAPK) module-regulated genes are enriched for abiotic stress responses, especially drought stress (Baldoni et al. 2021). MAPKs take part in different cellular processes including the development, growth and abiotic stress responses and they are present in the cytoplasm and nucleus (Khan et al. 2017). The minimum abscisic acid (ABA) signalling pathway includes the members of the regulatory component of the ABA receptor family (RCAR/PYR/PYL), the members of the SNF1-related kinase 2 (*SnRK2*) family and type 2C protein phosphatases (*PP2C*) (Sheard & Zheng 2009).

Due to it considering a wide range of experimental conditions, a meta-analysis can add a new perspective to the gene expression data analysis. Accordingly, for reporting precise results on drought tolerance mechanisms in barley, considering the results of various individual experiments is of importance. To the best of our knowledge, no meta-analysis has been conducted addressing barley microarray data under drought stress. In fact, the integration of various findings in individual experiments can lead to the identification of the key genes associated with the mechanisms of barley drought tolerance. The purpose of this study was to identify the drought stress-related hub genes (the most connected genes in the biological network), biological pathways, and TFs under drought stress through a meta-analysis of microarray data.

# MATERIAL AND METHODS

The Gene Expression Omnibus website (www.ncbi. nlm.nih.gov/geo/) was used to download the microarray datasets (GPL14927, and GPL1340) at the leaf tissue under drought stress in 2021. Out of 12 series,

Table 1. Microarray experiments used for the meta-analysis of H. vulgare L under drought stress

| Platform  | Accession | Genotype                            | Part of plant (barley) | Sample normal:stress |
|-----------|-----------|-------------------------------------|------------------------|----------------------|
| GPL14927  | GSE128048 | CamB                                | leaf                   | 3:3                  |
|           | GSE128048 | Maresi                              | leaf                   | 3:3                  |
| CDI 14007 | GSE103278 | CamB                                | leaf                   | 3:3                  |
| GPL14927  | GSE103278 | Maresi                              | leaf                   | 3:3                  |
| GPL1340   | GSE56437  | Georgia                             | leaf                   | 6:6                  |
|           | GSE56437  | Sebastian                           | leaf                   | 6:6                  |
| GPL1340   | GSE17669  | Barley spike                        | lemma                  | 3:3                  |
|           | GSE17669  | Barley spike                        | palea                  | 3:3                  |
| GPL1340   | GSE6990   | barley cv. Morex                    | leaf                   | 3:3                  |
| GPL1340   | GSE3170   | Oregon Wolfe Barley (OWB) dominant  | seedling               | 3:3                  |
| GPL1340   | GSE3170   | Oregon Wolfe Barley (OWB) recessive | seedling               | 3:3                  |
| GPL14927  | GSE73789  | Karat                               | leaf                   | 3:3                  |

The data of Table 1 that support this study are available in the NCBI GEO site at https://www.ncbi.nlm.nih.gov/geo/

7 series including 14 experiments with good quality were selected for the drought stress in the leaf tissue (Table 1). The main workflow microarray meta-analysis is depicted in Figure 1.

**Differential expressed genes (DEGs) and metaanalysis.** The microarray expression data were preanalysed as a separate dataset using the R language package. The data quality was controlled using Cor-

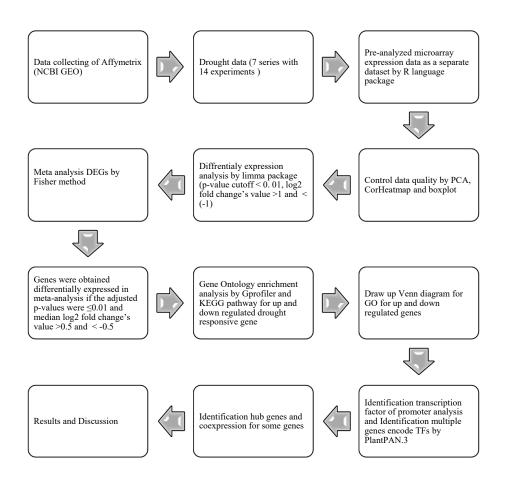



Figure 1. Microarray dataset meta-analysis workflow

Heatmap, a boxplot, and a principal component analysis (PCA) plot. Based on the PCA, the control and treated data under drought stress were categorised into different groups. The background correction and quantile normalisation were performed on nonnormalised data; subsequently, good RNA quality data were selected by the AgiMicroRna package for further analysis. By employing the Limma package (http://www.bioconductor.org/), a difference analysis of the selected data was performed. The obtained data were fitted to a linear model and by employing a simple Bayesian experimental model, and the standard errors were corrected. For each contrast/gene, the log2 fold change (LFC) and moderated t-statistic were calculated. The genes which showed significant *P*-values with a false discovery rate (FDR  $\leq$  0.01) were obtained and further analysis was considered for the DEG and LFC change values of each dataset (de Abreu Neto & Frei 2016). In various datasets, the relative expression values of the barley drought stress gene expression were performed to evaluate the overall simple gene response. For merging *P*-values that are unadjusted, the sum logs of Fisher method were undertaken. For setting the combined *P*-values for the datasets, the p. adjust function in metaRNASeq was applied by employing the 'fdr' method. In the case when the *P*-values were  $\leq$  0.01 and the median LFC values were >1 and <-1, the genes were considered as differentially expressed (Supplementary File 1 in Electronic Supplementary Material).

**Venn diagram.** The GO upregulated and down-regulated meta-DEGs were subjected to the web tool Venny v2.1 and the common GO upregulated and downregulated meta-DEGs were identified.

Gene set enrichment analysis and pathway analysis of the meta-DEGs. The gene set enrichment analysis was performed by g.profiler for the core drought-responsive upregulated and downregulated genes (https://biit.cs.ut.ee/gprofiler/gost). The biological process categories of the GO annotation were characterised under drought stress and the functional annotation of upregulated and downregulated genes were confirmed the Kyoto Encyclopedia of Genes and Genomes (KEGG) website (https://www.kegg.jp/kegg/pathway.html).

Identification of the transcription factor in the promoters of the meta-DEGs. The genomic sequences (1 500 bp upstream) of the upregulated and downregulated genes were downloaded from the Ensembl Plants website (http://plants.ensembl.org/biomart/martview/). This set of sequences was

analysed for conserved promoter elements, including TFs by the PlantPAN 3.0 website (http://plantpan.itps.ncku.edu.tw/) (Bhargava et al. 2013). The TFs were identified and the frequency of their occurrence in the promoters of the up- and downregulated genes was divided by all the transcription factors frequency in the promoters. Then, the percentage of transcription factors of the up- to downregulated genes was calculated and a related diagram was drawn for better visualisation.

Identification of the hub genes. The protein-protein interaction (PPI) network was drawn with the Cytoscape software and the information was derived from the STRING website. The hub genes were also characterised using the CytoHubba plugin in Cytoscape 3.6.1 with the maximal clique centrality (MCC) method (Chin et al. 2014).

Examination of the identified hub gene with twelve methods in CytoHubba. The identified hub genes by the MCC method were tested using the CytoHubba plugin in Cytoscape 3.6.1 with different ranking methods (including Edge Percolated Component (EPC), BottleNeck, Closeness, Degree, Density of Maximum Neighbourhood Component (DMNC), EcCentricity, Maximum Neighbourhood Component (MNC), Betweenness, Stress, ClusteringCoefficient, Radiality and Maximal clique centrality (MCC)) to obtain the importance of the nodes in a biological network.

Validation of upregulated and downregulated hub genes by other studies. Among the above-discussed genes belonging to the upregulated and downregulated hub genes, some genes were selected for gene expression verification. For validation, eight selected hub genes from the upregulated and downregulated genes were compared with the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) data from other studies.

### **RESULTS**

Our results showed 3 029 upregulated genes and 3 017 downregulated genes related to drought stress which were significant at a 1% probability level with log2-fold change values between >1 and < -1. The top 15 up and downregulated genes are presented in Table 2. The upregulated genes are mostly related to the drought tolerance protein, abiotic stress response, C2H2 zinc finger TF, and heat shock protein. On other hand, the downregulated genes are mainly related to the late embryogenesis abundant (*LEA*)

Table 2. The top 15 up- and downregulated genes identified from the microarray meta-analysis of the drought stress of  $Hordeum\ vulgare\ L.$ 

| Gene stable ID                | LFC    | Meta <i>P</i> -value | UniProtKB/TrEMBL ID | Description                                                                                                  |
|-------------------------------|--------|----------------------|---------------------|--------------------------------------------------------------------------------------------------------------|
| Upregulated genes             |        |                      |                     |                                                                                                              |
| HORVU.MOREX.<br>r3.4HG0386900 | 6.74   | 0                    | Q10N71              | similar to the plant-specific domain TIGR01589 family protein                                                |
| HORVU.MOREX.<br>r3.1HG0073130 | 4.83   | 0                    | F2DD06              | similar to the plant-specific domain TIGR01589 family protein                                                |
| HORVU.MOREX.<br>r3.3HG0244320 | 2.42   | 0                    | A0A287KIG6          | polyketide cyclase/dehydrase domain<br>containing protein                                                    |
| HORVU.MOREX.<br>r3.5HG0430940 | 2.30   | 0                    | A0A287QDF2          | glycoside hydrolase, family 5 protein                                                                        |
| HORVU.MOREX.<br>r3.5HG0426450 | 2.20   | 1.01E-08             | A0A0P0YD58          | similar to the drought tolerance protein                                                                     |
| HORVU.MOREX.<br>r3.4HG0394630 | 1.91   | 0                    | M0YTF0              | similar to the branched-chain-amino-acid aminotransferase 3, chloroplast precursor                           |
| HORVU.MOREX.<br>r3.1HG0056640 | 1.9    | 0                    | A0A287FN76          | hypothetical conserved gene                                                                                  |
| HORVU.MOREX.<br>r3.5HG0476020 | 1.81   | 1.72E-11             | F2DMW4              | abiotic stress response                                                                                      |
| HORVU.MOREX.<br>r3.3HG0237670 | 1.69   | 0                    | E5D3J5              | class II small heat shock protein and heat tolerance                                                         |
| HORVU.MOREX.<br>r3.4HG0380970 | 1.62   | 0                    | Q10MB0              | similar to galactinol synthase                                                                               |
| HORVU.MOREX.<br>r3.5HG0516880 | 1.55   | 2.34E-08             | A0A287SJD8          | C2H2 zinc finger transcription factor, drought tolerance, and stomatal aperture control                      |
| HORVU.MOREX.<br>r3.2HG0099870 | 1.54   | 2.22E-16             | A0A0P0W604          | similar to the heat shock protein 82                                                                         |
| HORVU.MOREX.<br>r3.3HG0302120 | 1.52   | 0                    | F2D2M4              | similar to the regulator of chromosome condensation (RCC1) family protein                                    |
| HORVU.MOREX.<br>r3.7HG0699010 | 1.50   | 0                    | F2DAQ2              | MYB transcription factor                                                                                     |
| HORVU.MOREX.<br>r3.1HG0074910 | 1.23   | 9.6E-05              | F2DVN6              | R-R-type MYB-like transcription factor,<br>and response to drought stress during<br>reproductive development |
| Downregulated gene            | es     |                      |                     |                                                                                                              |
| HORVU.MOREX.<br>r3.7HG0637810 | -7.95  | 0                    | C9ELM9              | late embryogenesis abundant (LEA) group 1<br>family protein                                                  |
| HORVU.MOREX.<br>r3.1HG0041720 | -7.67  | 0                    | A0A287F819          | protein with high similarity to proteins involved in wax production, and cuticular wax biosynthesis          |
| HORVU.MOREX.<br>r3.7HG0702620 | -7.24  | 0                    | M0Z3G6              | similar to the OSIGBa0142C11.2 protein                                                                       |
| HORVU.MOREX.<br>r3.7HG0658900 | -7.14  | 0                    | A0A287VX26          | similar to the MtN3 protein precursor                                                                        |
| HORVU.MOREX.<br>r3.1HG0002450 | -6.46  | 0                    | M0XCI1              | stress response                                                                                              |
| HORVU.MOREX.<br>r3.5HG0473680 | -4.619 | 0                    | -                   | abiotic stress response, and early panicle development                                                       |
| HORVU.MOREX.<br>r3.5HG0477620 | -2.75  | 0                    | M0Z0I7              | similar to the ubiquitin-protein ligase                                                                      |

Table 2 to be continued

| Gene stable ID                | LFC   | Meta P-value | UniProtKB/TrEMBL ID | Description                                                                                                       |
|-------------------------------|-------|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Downregulated gen             | es    |              |                     |                                                                                                                   |
| HORVU.MOREX.<br>r3.6HG0613690 | -2.41 | 1.82E-13     | Q6Z6A7              | calcium-binding protein, and drought stress tolerance                                                             |
| HORVU.MOREX.<br>r3.6HG0604390 | -2.18 | 2.13E-11     | F2DAQ1              | RING-type E3 ligase, and drought stress response                                                                  |
| HORVU.MOREX.<br>r3.5HG0459670 | -2.05 | 1.02E-13     | F2EIY5              | stress responsive alpha-beta barrel domain containing protein                                                     |
| HORVU.MOREX.<br>r3.7HG0665050 | -1.89 | 3.33E-16     | F2E7Z5              | similar to the germin-like protein 1 precursor                                                                    |
| HORVU.MOREX.<br>r3.1HG0083950 | -1.70 | 5.61E-08     | F2D3K2              | heat stress transcription factor                                                                                  |
| HORVU.MOREX.<br>r3.6HG0604730 | -1.22 | 2.22E-15     | A0A287UH91          | MYB transcription factor, and transcriptional activator in mediating stress and rhythm responsive gene expression |
| HORVU.MOREX.<br>r3.5HG0480470 | -1.02 | 1.84E-09     | Q69P88              | control of root system architecture, and drought avoidance                                                        |
| HORVU.MOREX.<br>r3.6HG0619650 | -1.01 | 1.12E-10     | M0WPT5              | bZIP transcription factor, regulation of ABA signalling, and drought resistance                                   |

LFC - log2 fold change

protein, abiotic stress response, calcium-binding protein, drought stress response, and basic leucine zipper (bZIP) TF.

The core drought-responsive up and down meta-DEGs were analysed to recognise the significantly enriched GO terms in the biological process in the drought response with P < 0.05 (Table 3). Fifty (50) and 69 terms were enriched in up- and downregulated genes, respectively (Figure 2). The GO terms in the upregulated genes are mainly related to the metabolic process and response to stimulus and the downregulated genes are mainly related to the response to drought stress. The common GO terms in the up- and downregulated genes include GO:0004553 (organic substance metabolic process), GO:0005975 (metabolic process), GO:0016567 (primary metabolic process), GO:0005634 (response to stimulus), GO:0006807 (nitrogen compound metabolic process), GO:0016021 (response to abiotic stimulus), GO:0102250 (response to temperature stimulus), GO:0005506 (cellular metabolic process), GO:0009507 (photorespiration), GO:0016301 (organic substance metabolic process) and GO:0006032 (carbohydrate metabolic process).

To understand the biological pathways in the up and down meta-DEGs under drought stress, an analysis was performed using KEGG (https://www.kegg.jp/kegg/mapper/color.html). The up and down meta DEGs

mainly belonged to the KEGG pathways including the metabolic pathways, biosynthesis of secondary metabolites, plant hormone signal transduction, phenylpropanoid biosynthesis, carbon metabolism, MAPK signalling pathway, glycolysis/gluconeogenesis, biosynthesis of amino acids, starch and sucrose metabolism, nitrogen metabolism, RNA degradation, zeatin biosynthesis, ribosome biogenesis, ABC transporters, mRNA surveillance pathway, DNA replication, and flavonoid biosynthesis. To explore the drought responsible genes, we focused on the analysis of the



Figure 2. The common genes from the datasets under drought stress of several groups of differential expressed genes (DEGs)

The comparison of a number of gene ontology (GO) up- and downregulated DEGs of *H. vulgare* L. show 11 common GO terms

plant hormone signalling pathway, MAPK signalling pathway, RNA degradation and DNA replication.

In the functions that belong to gibberellin and jasmonic acid (JA), significant changes were shown in the plant hormone signalling pathway (Figure 3A). The Jasmonate ZIM-domain (JAZ) interacts with MYC2, which can accordingly affect the abiotic stress response. In the functions that belong to ethylene, JA and ABA had significant changes in the MAPK signalling pathway (Figure 3B). The ABA signalling

pathway consists of three core components, including Pyrabactin Resistance/Pyrabactin resistance-like (PYR/PYL), PP2C and SnRK2 that can affect the adaption stress. In the functions that belong to Ccr-4-Not Complex, Caf16 and Polyadenylate-binding protein 1 (PABP1) had significant changes in the RNA degradation (Figure 3C), and in the functions that belong to DNA polymerase  $\alpha$ -primase complex,  $\alpha 1$  showed a significant change in the DNA replication pathway (Figure 3D).

Table 3. The top 15 biological process categories of the gene ontology (GO) annotation of the core drought-responsive regulated genes of *Hordeum vulgare* L.

| Gene Stable ID            | UniProtKB/<br>TrEMBL ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Description                           | Adjusted <i>P</i> -value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Upregulated genes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| HORVU.MOREX.r3.5HG0430940 | A0A287QDF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | organic substance metabolic process   | 1.24E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.6HG0568470 | F2D195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to heat                      | 4.88E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.4HG0348850 | M0ZB44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | metabolic process                     | 5.40E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.6HG0567160 | A5CFY5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | microtubule cytoskeleton organisation | 2.64E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.1HG0039160 | F2DJR8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | primary metabolic process             | 5.35E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.3HG0304970 | F2DLX4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | transmembrane transport               | 6.26E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.4HG0387870 | M0W8S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cellular response to heat             | 1.29E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.3HG0276810 | M0W799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to stimulus                  | 3.59E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.7HG0662970 | A0A0P0WU26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nitrogen compound metabolic process   | 9.24E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.5HG0474130 | B2KJ70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to stimulus                  | 1.429E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HORVU.MOREX.r3.5HG0491130 | F2DB02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | protein folding                       | 1.49E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.4HG0356420 | A0A287NMD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | signal transduction                   | 4.05E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.6HG0592460 | A0A287U8S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cellular metabolic process            | 4.80E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.2HG0104780 | A0A287H239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | photorespiration                      | 7.781E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HORVU.MOREX.r3.3HG0306200 | F2E397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | organic substance metabolic process   | 9.81E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| ed genes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| HORVU.MOREX.r3.4HG0333780 | A0A287MY79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | metabolic process                     | 3.60E-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.3HG0319100 | O64938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cellular process                      | 1.12E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.4HG0346620 | M0WQF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | organic substance metabolic process   | 1.71E-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.5HG0491740 | A0A287RT76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | carbohydrate metabolic process        | 1.08E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.3HG0277690 | Q8LR33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | small molecule metabolic process      | 7.32E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.7HG0687790 | A0A287WLW9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | primary metabolic process             | 8.13E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.6HG0568570 | F2D8Q7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to fungus                    | 1.27E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.2HG0165920 | M0YS06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to stress                    | 8.96E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.6HG0568470 | F2D195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to heat                      | 3.219E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HORVU.MOREX.r3.1HG0041710 | F2DYR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to abiotic stimulus          | 4.23E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.4HG0380510 | F2D639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to osmotic stress            | 8.26E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HORVU.MOREX.r3.4HG0351880 | M0Y1R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to oxidative stress          | 5.94 E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HORVU.MOREX.r3.2HG0104740 | F2CT51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | photosynthesis                        | 5.64 E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HORVU.MOREX.r3.6HG0619650 | M0WPT5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to water deprivation         | 9.56 E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| HORVU.MOREX.r3.3HG0225930 | F2E8B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | response to abiotic stimulus          | 1.35 E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                           | ## HORVU.MOREX.r3.5HG0430940 HORVU.MOREX.r3.6HG0568470 HORVU.MOREX.r3.4HG0348850 HORVU.MOREX.r3.6HG0567160 HORVU.MOREX.r3.1HG0039160 HORVU.MOREX.r3.3HG0304970 HORVU.MOREX.r3.3HG0304970 HORVU.MOREX.r3.4HG0387870 HORVU.MOREX.r3.7HG0662970 HORVU.MOREX.r3.5HG0474130 HORVU.MOREX.r3.5HG0491130 HORVU.MOREX.r3.6HG0592460 HORVU.MOREX.r3.6HG0592460 HORVU.MOREX.r3.3HG0306200 ed genes HORVU.MOREX.r3.4HG0333780 HORVU.MOREX.r3.3HG0306200 ed genes HORVU.MOREX.r3.4HG0346620 HORVU.MOREX.r3.3HG0306200 ed genes HORVU.MOREX.r3.4HG0346620 HORVU.MOREX.r3.6HG0568570 HORVU.MOREX.r3.7HG0687790 HORVU.MOREX.r3.6HG0568570 HORVU.MOREX.r3.6HG0568570 HORVU.MOREX.r3.6HG0568470 HORVU.MOREX.r3.1HG0041710 HORVU.MOREX.r3.4HG0330510 HORVU.MOREX.r3.4HG0351880 HORVU.MOREX.r3.2HG0104740 HORVU.MOREX.r3.2HG0104740 HORVU.MOREX.r3.2HG0104740 HORVU.MOREX.r3.2HG0104740 HORVU.MOREX.r3.6HG056850 | ### Tremblid    Comparison            | genes HORVU.MOREX.r3.5HG0430940 A0A287QDF2 organic substance metabolic process HORVU.MOREX.r3.6HG0568470 F2D195 response to heat metabolic process HORVU.MOREX.r3.6HG0566470 A5CFY5 microtubule cytoskeleton organisation HORVU.MOREX.r3.1HG0039160 F2DJR8 primary metabolic process HORVU.MOREX.r3.3HG0304970 F2DLX4 transmembrane transport HORVU.MOREX.r3.3HG0276810 M0W799 response to stimulus HORVU.MOREX.r3.5HG0474130 B2KJ70 response to stimulus HORVU.MOREX.r3.5HG0474130 B2KJ70 response to stimulus HORVU.MOREX.r3.5HG0474130 F2DB02 protein folding HORVU.MOREX.r3.6HG0592460 A0A287NMD4 signal transduction HORVU.MOREX.r3.3HG0306200 F2E397 organic substance metabolic process HORVU.MOREX.r3.3HG0306200 F2E397 organic substance metabolic process ed genes  HORVU.MOREX.r3.4HG0333780 A0A287MY79 metabolic process HORVU.MOREX.r3.3HG0319100 O64938 cellular process HORVU.MOREX.r3.3HG0346620 M0WQF9 organic substance metabolic process HORVU.MOREX.r3.3HG0346620 M0WQF9 organic substance metabolic process HORVU.MOREX.r3.3HG037690 Q8LR33 small molecule metabolic process HORVU.MOREX.r3.3HG0687790 A0A287RT76 carbohydrate metabolic process HORVU.MOREX.r3.3HG0687790 P2D8Q7 response to fungus PHORVU.MOREX.r3.4HG0686870 F2D8Q7 response to fungus PHORVU.MOREX.r3.4HG0686870 F2D8Q7 response to stress HORVU.MOREX.r3.4HG0380510 F2D639 response to somotic stress HORVU.MOREX.r3.4HG0380510 F2D639 response to somotic stress PAORVU.MOREX.r3.4HG0380510 F2D639 response to osmotic stress PAORVU.MOREX.r3.4HG0380510 F2D639 response to osmotic stress PAORVU.MOREX.r3.4HG0381880 M0Y1R4 response to osmotic stress PAORVU.MOREX.r3.4HG0380510 F2D639 response to osmotic stress PAORVU.MOREX.r3.4HG0380510 F2D639 response to osmotic stress PAORVU.MOREX.r3.4HG0380510 F2D639 response to osmotic stress PAORVU.MOREX.r3.4HG0381880 M0Y1R4 response to os |  |  |  |  |

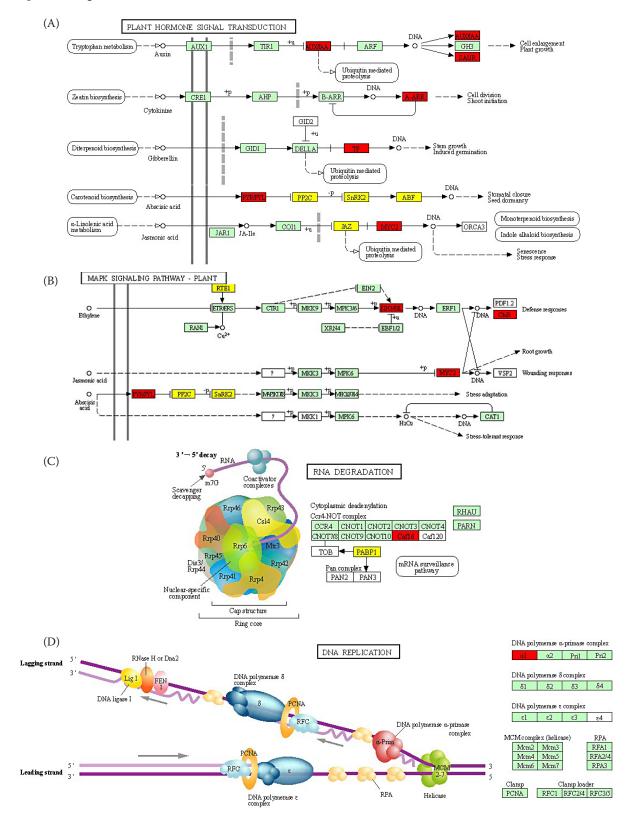



Figure 3. Up- and downregulation meta differential expressed gene (DEG) in the plant hormone signalling pathway (A), mitogen activated protein kinase (MAPK) signalling pathway (B), RNA degradation (C) and DNA replication (D) of *Hordeum vulgare* L. under drought stress

The red box represents the upregulated genes and yellow box shows the downregulated genes

The promoter sequence (1 500 bp) of the meta-DEGs was downloaded from the genome of H. vulgare L. from Biomart and Transcription Factor Binding Site (TFBS) scanned in the promoter sequence (Plant-PAN 3.0). The fifty TF families were categorised, 57.12% of the upregulated TFs and 60.07% of the downregulated TFs belonged to NA binding with one finger (Dof), Teosinte branched1/Cincinnata/ proliferating cell factor (TCP), basic helix loop-helix (bHLH), B3, bZIP and squamosa promoter binding proteins (SBPs) (Figure 4A). TCP, bHLH and bZIP were higher in the upregulated and downregulated meta-DEG. Examination of the frequency of the TFs up- to downregulated showed that the TCP under drought stress activates 1475% more upregulated genes than downregulated genes and *LEA\_5* activates 261% more downregulated genes than upregulated genes (Figure 4B). These results display that a peculiar set of TFs regulated the expression of genes in response to drought stress.

To identify the biological relationships between the genes, the PPI network was drawn using Cytoscape (Ver. 3.6.1) and the STRING website (https://string-db.org/) for the down- and upregulated meta-DEG under drought stress separately (Figures 5 and 6). Among the 30 top commonly upregulated DEGs hub genes, five similar to heat shock protein 70 (HORVU. MOREX.r3.4HG0396100, HORVU. MOREX.

r3.5HG0491130, HORVU. MOREX.r3.1HG0028320, HORVU. MOREX.r3.4HG0387870 and HORVU. MOREX.r3.4HG0416940); DNA-directed RNA polymerase (HORVU. MOREX.r3.3HG0295570) similar to the low temperature-responsive RNA-binding protein (HORVU. MOREX.r3.7HG0720730); conserved hypothetical protein (HORVU. MOREX.r3.6HG0552580) and MYB TF (HORVU. MOREX.r3.7HG0699010) are shown in Table 4. The upregulated meta-DEGs hub genes obtained by the MCC method in CytoHubba are mainly related to the heat shock protein, and DNA-directed RNA polymerase.

Among the top 30 commonly downregulated meta-DEGs hub genes, HORVU. MOREX.r3.5HG0444900 (similar to the elongation factor Ts), HORVU. MO-REX.r3.4HG0333190 (plastid RNA-binding protein, regulation of chloroplast RNA metabolism), HORVU. MOREX.r3.2HG0102500 (plastid chaperonin 60 alpha subunit, and seedling development), HORVU. MOREX.r3.2HG0122100 (nucleotide-binding, alpha-beta plait domain containing protein), HORVU. MOREX.r3.4HG0352600 (Similar to elongation factor P (EF-P)), HORVU. MOREX.r3.1HG0089000 (PRC-barrel domain containing protein), HORVU. MOREX.r3.5HG0471050 (similar to plastid-specific 30S ribosomal protein 2, and chloroplast precursor (PSRP-2), HORVU. MOREX.r3.6HG0613690 (calcium-binding protein, and drought stress tolerance),

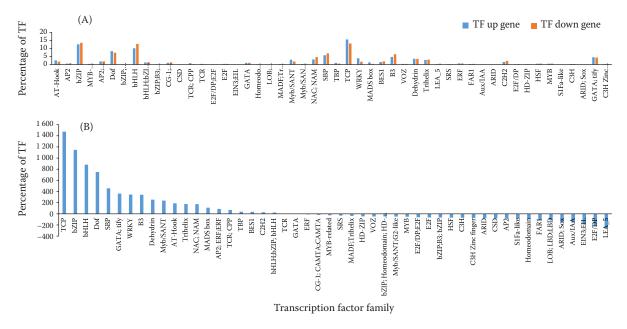



Figure 4. Diagram of the transcription factor of upregulated and downregulated drought-responsive differential expressed genes (DEGs) based on PlantPAN 3.0 in *Hordeum vulgare* L.: transcription factor (TF) of up- and downregulated genes under drought stress (A), percentage of TF upregulated to downregulated genes under drought stress (B)

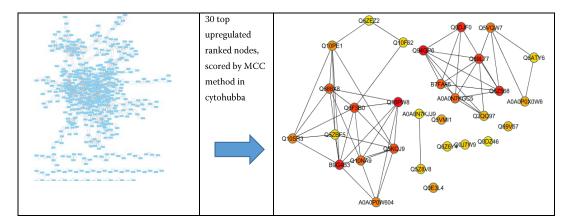



Figure 5. Protein-protein interaction (PPI) network of the meta differentially expressed genes (DEGs) for upregulated genes under drought stress; a cyto-Hubba analysis result using the meta DEG upregulated genes in the Cytoscape package; after the calculation finished, the top 30 essential nodes ranked by maximal clique centrality (MCC) scores were selected from the Barley network

The hub nodes are shown with a colour scheme from red (highly essential) to yellow (essential)

HORVU. MOREX.r3.5HG0491740 (membrane-associated chitinase-like protein) and HORVU. MOREX. r3.7HG0701900 (conserved hypothetical protein) are shown in Table 5. The downregulated meta-DEGs hub genes obtained by the MCC method in CytoHubba are mainly related to the glycolysis processes and abiotic stress related factors.

The hub genes were tested using the CytoHubba plugin in Cytoscape 3.6.1 with the MCC method (Figures 5 and 6). As the genomic information of barley has not yet been fully reported on, rice orthologues were used from Ensembl Plants (https://plants.ensembl.org). Then, the hub genes were vali-

dated by another twelve ranking methods. HORVU. MOREX.r3.4HG0334210 (Q10F62) in eight methods; HORVU. MOREX.r3.6HG0567270 (Q0E3L4) in seven methods; HORVU. MOREX.r3.5HG0510120 (Q94GP6) and HORVU. MOREX.r3.6HG0548700 (Q6ZEZ2) in six methods and HORVU. MOREX.r3.4HG0396100 (Q10PW8) in five methods were presented as the candidate hub genes upregulated meta-DEG (Figure 7). Moreover, HORVU. MOREX.r3.2HG0122100 (Q8LHN4) in eight methods; HORVU. MOREX.r3.5HG0444900 (Q2QP54) in seven methods; HORVU. MOREX.r3.5HG0480430 (Q5Z4M6), HORVU. MOREX.r3.5HG0480430

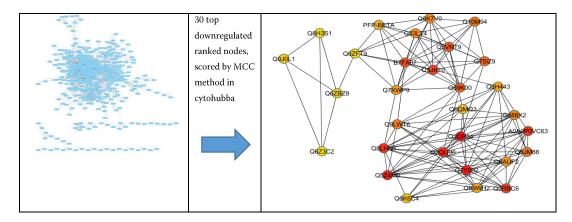



Figure 6. Protein-protein interaction (PPI) network of the meta differentially expressed genes (DEGs) for downregulated under drought stress; a CytoHubba analysis result using the meta DEG downregulated genes in the Cytoscape package; after the calculation finished, the top 30 essential nodes ranked by the maximal clique centrality (MCC) scores were selected from the Barley network

Hub nodes are shown with a colour scheme from red (highly essential) to yellow (essential)

Table 4. List of the top 30 upregulated meta-differential expressed genes (meta-DEGs) ranked nodes, scored by the maximal clique centrality (MCC) method in CytoHubba under drought stress in *Hordeum vulgare* L.

| Rank | Name       | Gene stable ID                | Score | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|------------|-------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Q94GP6     | HORVU.MOREX.<br>r3.5HG0510120 | 49    | WD-40 repeat containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1    | Q10PW8     | HORVU.MOREX.<br>r3.4HG0396100 | 49    | similar to the 70kD heat shock protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3    | B9G4B3     | HORVU.MOREX.<br>r3.5HG0491130 | 46    | similar to the heat shock protein 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4    | Q0DJF0     | HORVU.MOREX.<br>r3.5HG0530580 | 38    | hypothetical conserved gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4    | Q6Z568     | HORVU.MOREX.<br>r3.6HG0540760 | 38    | nucleotide-binding, alpha-beta plait domain containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6    | Q69L77     | HORVU.MOREX.<br>r3.6HG0589890 | 32    | brix domain containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7    | Q6F3B0     | HORVU.MOREX.<br>r3.5HG0517090 | 31    | similar to the DnaJ homologue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8    | Q5KQJ9     | HORVU.MOREX.<br>r3.1HG0028320 | 30    | heat shock protein Hsp70 family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9    | Q688X8     | HORVU.MOREX.<br>r3.1HG0087430 | 27    | similar to the DnaJ-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9    | B7FA85     | HORVU.MOREX.<br>r3.7HG0738150 | 27    | similar to fibrillarin-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11   | A0A0N7KGC5 | HORVU.MOREX.<br>r3.7HG0738150 | 26    | similar to fibrillarin-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11   | Q10NA9     | HORVU.MOREX.<br>r3.4HG0387870 | 26    | similar to the heat shock protein 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13   | Q5VQW7     | HORVU.MOREX.<br>r3.3HG0295570 | 24    | DNA-directed RNA polymerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14   | A0A0P0W604 | HORVU.MOREX.<br>r3.2HG0099870 | 23    | similar to the heat shock protein 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14   | Q10SR3     | HORVU.MOREX.<br>r3.4HG0416940 | 23    | similar to the heat shock 70 kDa protein,<br>mitochondrial precursor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16   | Q10PE1     | HORVU.MOREX.<br>r3.4HG0393540 | 21    | similar to the predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17   | Q5VMI1     | HORVU.MOREX.<br>r3.7HG0672740 | 20    | similar to the receptor-like protein kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17   | Q0E3L4     | HORVU.MOREX.<br>r3.6HG0567270 | 20    | similar to 4-hydroxyphenylpyruvate dioxygenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19   | A0A0P0X0W6 | HORVU.MOREX.<br>r3.2HG0113180 | 16    | similar to DNA-directed RNA polymerases I, II, and III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20   | Q2QQ97     | HORVU.MOREX.<br>r3.3HG0310510 | 14    | similar to the low temperature-responsive RNA-binding protein $% \left( 1\right) =\left( 1\right) \left( 1\right$ |
| 20   | Q69V57     | HORVU.MOREX.<br>r3.7HG0720730 | 14    | similar to Fructose-bisphosphate aldolase, cytoplasmic isozyme $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22   | Q5Z8V8     | HORVU.MOREX.<br>r3.7HG0726610 | 13    | NAD(P)-binding domain containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23   | Q10F62     | HORVU.MOREX.<br>r3.4HG0334210 | 12    | similar to the Thiamine biosynthesis protein thiC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23   | Q6Z6Y4     | HORVU.MOREX.<br>r3.6HG0552580 | 12    | conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23   | Q0J7W9     | HORVU.MOREX.<br>r3.7HG0699010 | 12    | MYB transcription factor, Circadian clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23   | Q6ATY6     | HORVU.MOREX.<br>r3.1HG0063540 | 12    | similar to the DNA-directed RNA polymerase<br>II 19 kDa polypeptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23   | Q5ZBF5     | HORVU.MOREX.<br>r3.3HG0273010 | 12    | WD40 repeat-like domain containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28   | A0A0N7KJJ9 | HORVU.MOREX.<br>r3.2HG0186470 | 11    | similar to the H0404F02.9 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28   | Q6ZEZ2     | HORVU.MOREX.<br>r3.6HG0548700 | 11    | similar to the ribose-5-phosphate isomerase precursor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28   | Q0DZ46     | HORVU.MOREX.<br>r3.6HG0599310 | 11    | similar to fatty aldehyde dehydrogenase $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 5. List of the top 30 downregulated meta-differential expressed gene (meta-DEG) ranked nodes, scored by the maximal clique centrality (MCC) method in CytoHubba under drought stress in *Hordeum vulgare* L.

| Rank | Name       | Gene Stable ID                | Score | Description                                                                                  |
|------|------------|-------------------------------|-------|----------------------------------------------------------------------------------------------|
| l    | Q2QP54     | HORVU.MOREX.<br>r3.5HG0444900 | 4 443 | similar to the elongation factor Ts                                                          |
| 2    | Q7Y092     | HORVU.MOREX.<br>r3.4HG0333190 | 4 338 | plastid RNA-binding protein, and Regulation of chloroplast<br>RNA metabolism                 |
| 3    | Q5Z4M6     | HORVU.MOREX.<br>r3.7HG0674730 | 3 813 | similar to the trigger factor-like protein                                                   |
| ŀ    | Q2QU06     | HORVU.MOREX.<br>r3.2HG0102500 | 3 451 | plastid chaperonin 60 alpha subunit, and seedling development                                |
| 5    | Q8LHN4     | HORVU.MOREX.<br>r3.2HG0122100 | 3 400 | nucleotide-binding, alpha-beta plait domain containing protein                               |
| 6    | A0A0P0VC63 | HORVU.MOREX.<br>r3.3HG0310400 | 2 730 | methyltransferase small domain containing protein                                            |
| ,    | Q2RBC6     | HORVU.MOREX.<br>r3.4HG0352600 | 2 505 | similar to elongation factor P (EF-P)                                                        |
| ;    | Q5JK10     | HORVU.MOREX.<br>r3.3HG0312010 | 2 205 | similar to trans aldolase                                                                    |
| )    | B7FA07     | HORVU.MOREX.<br>r3.5HG0477350 | 2 178 | enolase                                                                                      |
| 0    | Q5VNT9     | HORVU.MOREX.<br>r3.7HG0647190 | 1 938 | similar to enolase 1                                                                         |
| 1    | Q69K00     | HORVU.MOREX.<br>r3.5HG0499580 | 1 743 | similar to triosephosphate isomerase                                                         |
| .2   | Q75IZ9     | HORVU.MOREX.<br>r3.6HG0568480 | 1 498 | similar to the glucose-6-phosphate dehydrogenase precursor                                   |
| .3   | Q10M94     | HORVU.MOREX.<br>r3.4HG0380840 | 1 473 | chloroplast precursor                                                                        |
| 4    | Q5JM88     | HORVU.MOREX.<br>r3.3HG0329300 | 1 274 | similar to the radical SAM domain-containing protein                                         |
| .5   | Q9LWT6     | HORVU.MOREX.<br>r3.7HG0639380 | 1 228 | hypothetical gene                                                                            |
| .6   | Q688X2     | HORVU.MOREX.<br>r3.1HG0089000 | 1 224 | PRC-barrel domain containing protein                                                         |
| .7   | Q6K7V0     | HORVU.MOREX.<br>r3.4HG0346620 | 1 087 | similar to the uridine kinase-like protein                                                   |
| 17   | Q53LT4     | HORVU.MOREX.<br>r3.4HG0346620 | 1 087 | uridine kinase family protein                                                                |
| .9   | Q6AUF2     | HORVU.MOREX.<br>r3.1HG0088680 | 1 061 | protein of unknown function DUF561 family protein                                            |
| 20   | Q7XWP9     | HORVU.MOREX.<br>r3.2HG0106830 | 741   | transketolase C-terminal-like domain containing protein                                      |
| 21   | Q69WH2     | HORVU.MOREX.<br>r3.7HG0711020 | 599   | similar to the bundle sheath defective protein 2                                             |
| 22   | Q6H443     | HORVU.MOREX.<br>r3.5HG0471050 | 556   | similar to the plastid-specific 30S ribosomal protein 2, and chloroplast precursor (PSRP- 2) |
| 23   | PFP-BETA   | HORVU.MOREX.<br>r3.6HG0613690 | 494   | calcium-binding protein, and drought stress tolerance                                        |
| 24   | Q5QMQ3     | HORVU.MOREX.<br>r3.3HG0279360 | 419   | similar to the ATP synthase protein I -related                                               |
| 25   | Q6K6C4     | HORVU.MOREX.<br>r3.6HG0628900 | 369   | similar to the 29 kDa ribonucleoprotein                                                      |
| 26   | Q0J0L1     | HORVU.MOREX.<br>r3.5HG0491740 | 266   | membrane-associated chitinase-like protein                                                   |
| 27   | Q6ZFT9     | HORVU.MOREX.<br>r3.6HG0609360 | 250   | similar to the pyrophosphatefructose 6-phosphate<br>1-phosphotransferase alpha subunit       |
| 27   | Q6ZBZ8     | HORVU.MOREX.<br>r3.7HG0701900 | 250   | conserved hypothetical protein                                                               |
| 29   | Q8H3S1     | HORVU.MOREX.<br>r3.5HG0493200 | 249   | FAS1 domain containing protein                                                               |
| 30   | Q6Z3C2     | HORVU.MOREX.<br>r3.3HG0308570 | 248   | protein of unknown function DUF1218 family protein                                           |

(Q69P84), HORVU. MOREX.r3.5HG0499580 (Q69K00) in six methods and HORVU. MOREX. r3.5HG0514980 (Q10CU7) in five methods were presented as the candidate hub genes downregulated meta-DEG (Figure 8). The list of the top ten gene upregulated and downregulated by the twelve methods is provided in Tables 6 and 7. Screening the genes into five to ten methods confirmed the high importance of these genes in the drought tolerance.

To confirm the results of this study, our results were compared with the other researcher's results. The up-

regulated hub genes of this study including HORVU. MOREX.r3.4HG0396100 (Os03g0218500), HORVU. MOREX.r3.6HG0548700 (Os07g0176900), HORVU. MOREX.r3.2HG0099870 (Os04g0107900) and HORVU. MOREX.r3.7HG0672740 (Os06g0288100) and the downregulated hub genes including HORVU. MOREX.r3.5HG0444900 (Os12g0541500), HORVU. MOREX.r3.5HG0499580 (Os09g0535000), HORVU. MOREX.r3.5HG0514980 (Os03g0780500) and HORVU. MOREX.r3.7HG0637280 (Os12g0448900) agree with those obtained from other qRT-PCR data studies (Figure 9).

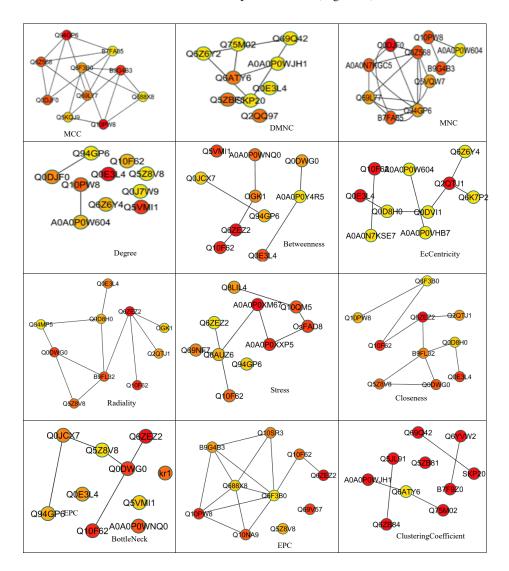



Figure 7. Construction of the protein-protein interaction (PPI) network and identification of the upregulated meta differentially expressed gene (DEG) candidate hub genes with twelve methods of Cytohubba by Cytoscape 3.6.1 (Edge Percolated Component (EPC), Bottle Neck, Closeness, Degree, Density of Maximum Neighbourhood Component (DMNC), EcCentricity, Maximum Neighbourhood Component (MNC), Betweenness, Stress, ClusteringCoefficient, Radiality and Maximal clique centrality (MCC))

The top ten nodes are presented with a colour scheme from red (highly essential) to yellow (essential)

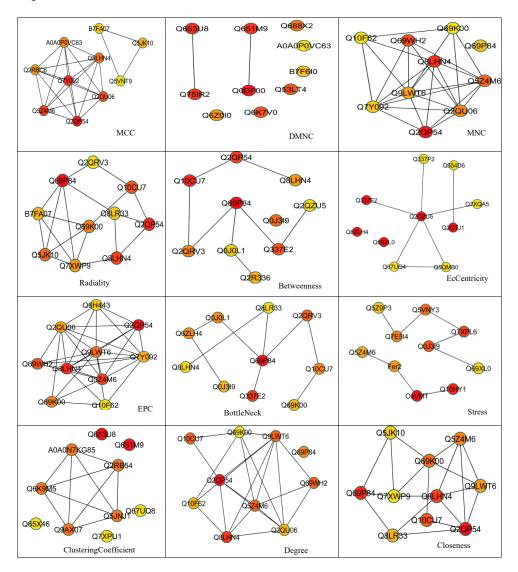



Figure 8. Construction of the protein-protein interaction (PPI) network and identification of the downregulated meta differentially expressed gene (DEG) candidate hub genes with twelve methods of Cytohubba by Cytoscape 3.6.1 (Edge Percolated Component (EPC), Bottle Neck, Closeness, Degree, Density of Maximum Neighbourhood Component (DMNC), EcCentricity, Maximum Neighbourhood Component (MNC), Betweenness, Stress, ClusteringCoefficient, Radiality and Maximal clique centrality (MCC))

The top ten nodes are presented with a colour scheme from red (highly essential) to yellow (essential)

### **DISCUSSION**

In this study, a large-scale comparative analysis of the transcriptome was performed through a metaanalysis using gene expression data from microarrays to estimate the differential expression of genes between normal and drought stress in barley. The plants show different physiological responses to different environments which can be determined by differentially expressed genes (DEGs). In this research, the GO terms in the upregulated genes are mainly related to the metabolic process and response to stimulus and are mainly associated with response to abiotic stresses in the downregulated genes (Table 3). The drought stress tolerance-related genes can control the stomata closure via carbon metabolism, glycine-betaine synthesis and reactive oxygen scavenging (Guo et al. 2009). Secondary metabolites play an important role in overcoming environmental pressures and are engaged in protection functions in response to abiotic stress. One effective mechanism to reduce damage from drought stress is the accumulation of high

Table 6. List of the top 10 upregulated meta-differential expressed gene (meta-DEG) ranked nodes, scored by twelve topological algorithms in CytoHubba under drought stress in *Hordeum vulgare* L.

| Method                | Gene name                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------|
| MCC                   | Q94GP6, Q10PW8, B9G4B3, Q0DJF0, Q6Z568, Q69L77, Q6F3B0, Q5KQJ9, Q688X8, B7FA85             |
| MNC                   | Q0DJF0, A0A0N7KGC5, Q6Z568, Q10PW8, B9G4B3, B7FA85, Q69L77, Q94GP6, Q5VQW7, A0A0P0W604     |
| Degree                | Q0E3L4, Q5VMI1, Q10PW8, Q0DJF0, Q10F62, Q6Z6Y4, A0A0P0W604, Q94GP6, Q5Z8V8, Q0J7W9         |
| Closeness             | Q6ZEZ2, Q10F62, Q0E3L4, Q0DWG0, Q5Z8V8, B9FL32, Q2QTJ1, Q10PW8, Q0D8H0, Q6F3B0             |
| BottleNeck            | Q6ZEZ2, Q10F62, Q0DWG0, A0A0P0WNQ0, kr1, Q0JCX7, Q0E3L4, Q94GP6, Q5VMI1, Q5Z8V8            |
| Stress                | A0A0P0XM67, A0A0P0XXP5, OsFAD8, Q10QM5, Q10F62,<br>Q69NF7, Q8LIL4, Q6AUZ6, Q94GP6, Q6ZEZ2  |
| DMNC                  | Q6F3B0, Q2QQ97, Q6ATY6, Q5ZBF5, A0A0P0WJH1, Q0E3L4, SKP20, Q69Q42, Q6Z6Y2, Q75M02          |
| EcCentricity          | Q10F62, Q0E3L4, Q2QTJ1, Q6K7P2, Q0D8H0, Q0DVI1, A0A0N7KSE7, Q6Z6Y4, A0A0P0VHB7, A0A0P0W604 |
| EPC                   | Q6ZEZ2, Q10PW8, B9G4B3, Q10NA9, Q6F3B0, Q69V57, Q688X8, Q10PE1, Q10F62, A0A0P0W604         |
| Radiality             | Q6ZEZ2, Q10F62, Q0DWG0, B9FL32, Q5Z8V8, Q0E3L4, Q2QTJ1, Q0D8H0, OGK1, Q84MP5               |
| Betweenness           | Q6ZEZ2, Q10F62, Q5VMI1, Q0E3L4, A0A0P0WNQ0, OGK1, Q0DWG0, Q94GP6, Q0JCX7, A0A0P0Y4R5       |
| ClusteringCoefficient | A0A0P0WJH1, SKP20, Q69Q42, Q75M02, Q6ZB84, Q5JL91,<br>B7F9Z0, Q6YVW2, Q5ZB81, Q6ATY6       |

 $MCC-Maximal\ clique\ centrality; MNC-Maximum\ Neighbourhood\ Component; DMNC-Density\ of\ Maximum\ Neighbourhood\ Component; EPC-Edge\ Percolated\ Component$ 

intracellular levels of osmoprotectant compounds such as proline (Rontein et al. 2002).

In this study, based on the TF frequency, Dof, TCP, bHLH, B3, bZIP, SBP, Dhns and NAC; NAM showed

the highest percentage of TFs related to the upregulated and downregulated meta-DEGs (Figure 4A). TFs of *NAC* have been shown to work not only with plant development, but also with responses to abiotic

Table 7. List of the top 10 downregulated meta-differential expressed gene (meta-DEG) ranked nodes, scored by twelve topological algorithms in CytoHubba under drought stress in *Hordeum vulgare* L.

| Method                 | Gene name                                                                          |
|------------------------|------------------------------------------------------------------------------------|
| MCC                    | Q2QP54, Q7Y092, Q5Z4M6, Q2QU06, Q8LHN4, A0A0P0VC63, Q2RBC6, Q5JK10, B7FA07, Q5VNT9 |
| MNC                    | Q2QP54, Q8LHN4, Q69WH2, Q5Z4M6, Q2QU06, Q9LWT6, Q7Y092, Q69P84, Q10F62, Q69K00     |
| Degree                 | Q2QP54, Q8LHN4, Q10CU7, Q5Z4M6, Q9LWT6, Q69WH2, Q69P84, Q2QU06, Q10F62, Q69K00     |
| Closeness              | Q2QP54, Q69P84, Q8LHN4, Q10CU7, Q69K00, Q5Z4M6, Q9LWT6, Q8LR33, Q5JK10, Q7XWP9     |
| BottleNeck             | Q69P84, Q337E2, Q2QRV3, Q10CU7, Q0J0L1, Q6ZLH4, Q0J3I9, Q69K00, Q8LHN4, Q8LR33     |
| Stress                 | OsVMT, Q10HY1, Q7XPL6, Q0J3I9, Q5VNY3, Q7E5I4, Fer2, Q5Z4M6, Q5Z9P3, Q69XL0        |
| DMNC                   | Q0DF00, Q75IR2, Q653U8, Q651M9, Q6K7V0, Q53LT4, Q688X2, Q6Z0I0, B7F6I0, A0A0P0VC63 |
| EcCentricity           | Q69XL0, Q2QZU5, Q2QTJ1, Q337E2, Q6ZLH4, Q654D6, Q5QMB0, Q7XQA5, Q67UQ4, Q337P2     |
| EPC                    | Q2QP54, Q8LHN4, Q5Z4M6, Q69WH2, Q9LWT6, Q69K00, Q2QU06, Q10F62, Q7Y092, Q6KA61     |
| Radiality              | Q69P84, Q2QP54, Q8LHN4, Q10CU7, Q5JK10, Q69K00, Q7XWP9, B7FA07, Q8LR33, Q2QRV3     |
| Betweenness            | Q69P84, Q10CU7, Q2QP54, Q337E2, Q0J3I9, Q2QRV3, Q8LHN4, Q2R336, Q0J0L1, Q2QZU5     |
| Clustering Coefficient | Q653U8, Q651M9, A0A0N7KG85, Q2RB54, Q9AX07, Q5JNJ1, Q6K9M5, Q67UQ8, Q7XPU1, Q65X46 |

 $MCC-Maximal\ clique\ centrality; MNC-Maximum\ Neighbourhood\ Component; DMNC-Density\ of\ Maximum\ Neighbourhood\ Component; EPC-Edge\ Percolated\ Component$ 

stress (Zhou et al. 2009). A gene called HvSNAC1 from the NAC TF family has been isolated from droughtstressed barley plants and the gene under the control of the maize ubiquitin promoter that was introduced to barley (cv. Golden promise) and transgenic plants constitutively expressed the HvSNAC1 gene were reported to have higher drought tolerance along with a productivity increase via the expression of several stress-inducible genes (Al Abdallat et al. 2014). bHLH proteins play a crucial role in the secondary metabolism and ABA-mediated signal transduction pathway, and they have the capacity of regulating the adaptive response of plants to abiotic stresses (Nakashima et al. 2012). Dhns are one of the main groups of genes that are induced by drought stress. A wide range of studies have addressed the changes in dehydrin gene expression in response to drought stress. Ten of the barley *Dhns* gene family (*Dhn1-11*) were reported to be upregulated by the ABA treatment and dehydration (Choi & Close 2000). A significant increase was found in the expression of Dhn13 by drought in the cv. Morex and Tibetan hull-less barley (Rodriguez et al. 2005; Qian et al. 2008).

In this study, in the MAPK signalling pathway, the *RTE1* gene as the downregulated gene and *ChiB* 

and EIN3/EIL genes as the upregulated genes affect the defensive response in ethylene. The MYC2 gene as the upregulated gene affects the growth root in the JA. Next, PYR/PYL as the upregulated gene, and PP2C and SnRK2 as the downregulated genes affect the adaption stress in the ABA (Figure 3B). MAPK cascades are activated by drought, salinity, cold, and hormone stimuli, as well as by developmental processes, such as proper cell division and differentiation or abscission (Colcombet & Hirt 2008). The ethylene signalling pathway was represented in the study of Janiak et al. (2018) by observing a higher initial expression of the gene encoding EIN3-binding F-box protein 1 (EBF1) in CamB genotype roots of barley. In the plant hormone signal transduction pathway, the JAZ gene as the downregulated gene interacts with MYC2 as the upregulated gene, which can affect the abiotic stress response in the JA. In the ABA biosynthesis, the PYR/PYL receptor as the upregulated gene; PP2C, SnRK2 and the ABRE-binding factors (ABFs) as the downregulated genes affect the stomatal closure. The genes including AUX/IAA and SAURS in Auxin biosynthesis (which affect the cell elongation and plant growth) as well as the A-ARR gene in cytokinin with cell division properties were

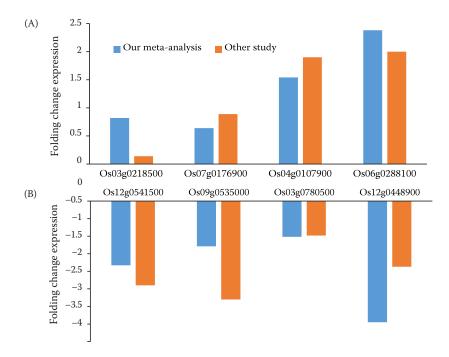



Figure 9. Validation of the upregulated and downregulated hub genes by other studies; the expression fold changes from (A): upregulated hub genes (Os03g0218500 (Ueda et al. 2012), Os07g0176900 (Aslam et al. 2019), Os04g0107900 (Rerksiri et al. 2013) and Os06g0288100 (Kan et al. 2017)) and (B): downregulated hub genes (Os12g0541500 (Shimono et al. 2016), Os09g0535000 (Park et al. 2012), Os03g0780500 (Jeong et al. 2017), and Os12g0448900 (Lee et al. 2016)) are strongly in agreement with those obtained from other qRT-PCR result studies

considered as upregulated genes (Figure 3A). JAs are lipid-derived compounds with signal functions that mediate plant stress responses and development processes (Wasternack & Kombrink 2010). In *Arabidopsis*, induction of the *AtMPK1/2* kinase activity is observed in the leaves 1 h after JA treatment, which is involved in the stomatal closure (Lee et al. 2016). *ABFs* are among the *bZIP*-type TFs that have the responsibility of controlling the gene expression in an ABA-dependent manner and, according to a study conducted by Liu et al. (2017), the serine/ threonine kinase family responds to cold stresses and is involved in the ABA signalling pathway.

In the RNA degradation pathway, the genes *Caf16* and *PABP1* in Ccr4-Not Complex were identified as up- and downregulated genes, respectively (Figure 3C). On the other hand, in the DNA replication pathway, the  $\alpha 1$  gene in the DNA polymerase  $\alpha$  -primase complex was identified as an upregulated gene (Figure 3D). CAF-1 chaperone is bound to Proliferating Cell Nuclear Antigen (PCNA) at the replication fork. CAF-1 is recruited by PCNA to the replication fork and is involved in supplying *de novo* synthesised H3–H4 dimers to the DNA replication machinery (Foltman et al. 2013).

To determine the genes with a prominent role in the network, the genes with high connectivity known as hub genes were identified. In this study, upregulated DEGs hub genes are mainly related to the thiamine biosynthesis protein (thiC), 4-hydroxyphenylpyruvate dioxygenase, ribose-5-phosphate isomerase precursor and heat shock protein (Hsp70) (Table 4 and Figure 7). Tunc-Ozdemir et al. (2009) reported the role of thiamine pyrophosphate (TPP) as an important stress response molecule as it was demonstrated that thiamine biosynthesis is induced in Arabidopsis in response to different abiotic stresses as an upregulated gene. Hsps chaperones are responsible for protein folding, assembly, translocation and degradation in many normal cellular processes, stabilised proteins and membranes, and can assist in protein refolding under abiotic stress conditions (Lin et al. 2001). Moreover, the downregulated DEGs hub genes are mainly related to the nucleotide-binding, alpha-beta plait domain containing protein, EF-Ts, aldehyde dehydrogenase and seed maturation, trigger factor-like protein and inosine-5-monophosphate dehydrogenase 2 (Table 5 and Figure 8). The protein synthesis elongation factor Tu (EF-Tu) plays an important role in the elongation phase of protein synthesis in organelles such as plastids and mitochondria (Allen et al. 2011). The cytosolic homologue of EF-Tu in plants is EF-1α. EF-Ts can facilitate the exchange of EF-Tu-bound GDP for GTP and can be considered as a key factor in the ribosomal biosynthesis of proteins in cells. Soybean EF-1 $\alpha$  might be an important factor in translation regulation during abiotic stresses (Chung et al. 2009). Chloroplasts are the only subcellular compartments in eukaryotes that seem to have molecular chaperones of the trigger factor family (Allen et al. 2011). Trigger factor binds the ribosome-D1 complex prior to the association with the thylakoid targeted Signal Recognition Particle (cpSRP54), a chaperone-like moiety and has an important role in the translation regulation in abiotic stresses. In plants, aldehyde dehydrogenases (ALDHs) play the role of aldehyde scavengers since they remove reactive aldehydes, accordingly affecting the abiotic stress responses. The ALDH 7 gene of the soybean has been reported to tolerate drought in Arabidopsis thaliana and the overexpression of the CsALDH gene in alfalfa has been promoted to cause resistance to abiotic stress (Duan et al. 2014).

To confirm the accuracy of the meta-analysis results, we compared the expression fold changes of four selected genes from the upregulated hub genes with those obtained from other qRT-PCR studies (Os03g0218500 (Ueda et al. 2012), Os07g0176900 (Aslam et al. 2019), Os04g0107900 (Rerksiri et al. 2013) and Os06g0288100 (Kan et al. 2017)), and also from the downregulated hub genes (Os12g0541500 (Shimono et al. 2016), Os09g0535000 (Park et al. 2012), Os03g0780500 (Jeong et al. 2017) and Os12g0448900 (Lee et al. 2016)) (Figure 9).

## **CONCLUSION**

Researchers can study the expression of thousands of genes and their co-expression partners under different stresses at the same time using advances in genome-scale transcriptome analysis methods. DEGs represent the genes in different signalling pathways and networks and this provides an opportunity to find out which genes play the major role in various stresses. On bias study of the references, this is the first study addressing barley as the target plant to detect genes involved in drought stresstolerance responses. In this study, we performed a meta-analysis and computational system biology analysis for the genome-wide expression data to identify the responsive genes to understand how

H. vulgare L. responds to drought stress. Most of the DEGs were involved in the DNA replication pathway, MAPK signalling pathway, pathways of biosynthesis of secondary metabolites, RNA degradation and plant hormone signal transduction. Identification of the hub genes by several methods could be effectual in getting an overview of the hub genes that play a crucial role in drought stress response in barley. This research promoted a new line of approach addressing the expression profiles of different genes under drought conditions, identified the main genes in response to drought stress, and introduced them as candidate genes with the aim of improving plant tolerance by employing genetic engineering approaches.

Acknowledgements: The authors are thankful to the research deputy of Rojava and Azarbaijan shahid Madani Universities for the financial support of this project. Also, the authors are thankful to Dr M. Amini (Vice president for research) and Dr H. Saify (Co-chair of Institute of Science and Modern Technology) of Rojava University.

### **REFERENCES**

- Al Abdallat A.M., Ayad J.Y., Abu Elenein J.M., Al Ajlouni Z., Harwood W.A. (2014): Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (*Hordeum vulgare* L.). Molecular Breeding, 33: 401–414.
- Allen J.F., de Paula W.B., Puthiyaveetil S., Nield J.A. (2011): Structural phylogenetic map for chloroplast photosynthesis. Trends in Plant Science, 16: 645–655.
- Aslam M.M., Rehman S.H., Khatoon A., Jamil M., Yamaguchi H., Hitachi K., Tsuchida K., Li X., Sunohara Y., Matsumoto H., Komatsu S. (2019): Molecular responses of maize shoot to a plant derived smoke solution. International Journal of Molecular Sciences, 20: 1319.
- Bailey-Serres J., Parker J.E., Ainsworth E.A., Oldroyd G.E.D., Schroeder J.I. (2019): Genetic strategies for improving crop yields. Nature, 575: 109–118.
- Baldoni E., Frugis G., Martinelli F., Benny J., Paffetti D., Buti M. (2021): A comparative transcriptomic metaanalysis revealed conserved key genes and regulatory networks involved in drought tolerance in cereal crops. International Journal of Molecular Sciences, 22: 1306.
- Benny J., Pisciotta A., Caruso T., Martinelli F. (2019): Identification of key genes and its chromosome regions linked to drought responses in leaves across different crops through meta-analysis of RNA-Seq data. BMC Plant Biology, 9: 194.
- Bhargava A., Clabaugh I., To J.P., Maxwell B.B., Chiang Y.H., Schaller G.E., Loraine A., Kieber J.J. (2013): Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in *Arabidopsis*. Plant Physiology, 162: 272–294.

- Chin C.H., Chen S.H., Wu H.H., Ho C.W., Ko M.T., Lin C.Y. (2014): CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8: 1–7.
- Choi D.W., Close T.J. (2000): A newly identified barley gene, *Dhn12*, encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theoretical and Applied Genetics, 100: 1274–1278.
- Chung E., Cho C.W., So H.A., Yun B.H., Lee J.H. (2009): Differential expression of soybean SLTI100 gene encoding translation elongation factor 1A by abiotic stresses. Journal of Pharmaceutical Biology, 36: 255–260.
- Colcombet J., Hir H. (2008): Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochemical Journal, 413: 217–226.
- Cominelli E., Conti L., Tonelli C., Galbiati M. (2013): Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnology, 30: 355–361.
- Daryani P., Ramandi H.D., Dezhsetan S., Mansuri R.M., Salekdeh G.H., Shobbar Z.S. (2022): Pinpointing genomic regions associated with root system architecture in rice through an integrative meta-analysis approach. Theoretical and Applied Genetics, 135: 81–106.
- de Abreu Neto J.B., Frei M. (2016): Microarray meta-analysis focused on the response of genes involved in redox homeostasis to diverse abiotic stresses in rice. Frontiers in Plant Science, 6: 1260.
- Duan P., Rao Y., Zeng D., Yang Y., Xu R., Zhang B., Dong G., Qian Q., Li Y. (2014): SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant Journal, 77: 547–557.
- Foltman M., Evrin C., De Piccoli G., Jones R.C., Edmondson R.D., Katou Y., Nakato R., Shirahige K., Labib K. (2013): Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Reports, 3: 892–904.
- Guo P., Baum M., Grando S., Ceccarelli S., Bai G., Li R., Korff M.V., Varshney R.K., Graner A., Valkonun J. (2009): Differentially expressed genes between drought-tolerant and drought sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60: 3531–3544.
- Janiak A., Kwasniewski M., Sowa M., Gajek K., Zmuda K., Koscielniak J., Szarejko I. (2018): No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Frontiers in Plant Science, 8: 1–25.
- Janiak A., Kwasniewski M., Sowa M., Kuczynska A., Mikołajczak K., Ogrodowicz P., Szarejko I. (2019): Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms. International Journal of Molecular Sciences, 20: 6139.

- Jeong K., Baten A., Waters D.L.E., Pantoja O., Julia C.C., Wissuwa M., Heuer S., Kretzschmar T., Rose T.J. (2017): Phosphorus remobilization from rice flag leaves during grain filling: An RNA-seq study. Plant Biotechnology Journal, 15: 15–26.
- Kan Ch.Ch., Chung T.U., Wu H.U., Juo Y.A., Hsieh M.H. (2017): Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics, 18: 1–17.
- Khan M.R., Khan I., Ibrar Z., Léon J., Naz A.A. (2017): Drought-responsive genes expressed predominantly in root tissues are enriched with homotypic cis-regulatory clusters in promoters of major cereal crops. The Crop Journal, 5: 195–206.
- Lee K.J., Kwon S.J., Hwang J.E., Han S.M., Jung I., Kim J.B., Choi H.I., Ryu J., Kang S.Y. (2016): Genome-wide expression analysis of a rice mutant line under salt stress. Genetics and Molecular Research, 15: 1–15.
- Lin B.L., Wang J.S., Liu H.C., Chen R.W., Meyer Y., Barakat A., Delseny M. (2001): Genomic analysis of the Hsp70 superfamily in *Arabidopsis thaliana*. Cell Stress Chaperones, 6: 201–208.
- Liu Z., Ge X., Yang Z., Zhang C., Zhao G., Chen E., Liu J., Zhang X., Li F. (2017): Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.). BMC Genomic Data, 18: 54.
- Mir R.R., Zaman-Alla M., Sreenivasulu N., Trethowan R. (2012): Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125: 625–645.
- Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. (2012): AP2/ ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819: 86–96.
- Nakashima K., Takasaki H., Mizoi J., Shinozaki K., Yamaguchi-Shinozak K. (2012): NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819: 97–103.
- Ozturk Z.N., Talame V., Deyhoyos M., Deyholos M., Michalowski C.B., Galbraith D.W., Gozukirmizi N., Tuberosa R., Bohnert H.J. (2002): Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology, 48: 551–573.
- Park S.H., Chung P.J., Juntawong P., Bailey-Serres J., Kim Y.Sh., Jung H., Bang S.W., Kim Y.K., Choi Y.D., Kim J.K. (2012): Posttranscriptional control of photosynthetic mRNA decay under stress conditions requires 3' and 5' untranslated regions and correlates with differential polysome association in rice. Plant Physiology, 159: 1111–1124.
- Qian G., Liu Y., Ao D., Yang F., Yu M. (2008): Differential expression of dehydrin genes in hull-less barley (*Hordeum vulgare* ssp. vulgare) depending on duration of dehydration stress. Canadian Journal of Plant Science, 88: 899–906.
- Rerksiri W., Zhang X., Xiong H., Chen X. (2013): Expression and promoter analysis of six heat stress-inducible genes in rice. The Scientific World Journal, 1: 10.

- Rodriguez E.M., Svenson J.T., Malatrasi M., Choi D.W., Close T.J. (2005): Barley *Dhn13* encodes a KS-type dehydrin with constitutive and stress responsive expression. Theoretical and Applied Genetics, 110: 852–858.
- Rontein D., Basset G., Hanson A.D. (2002): Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering, 4: 49–56.
- Roy S. (2016): Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior, 11: e1117723
- Sheard L.B., Zheng N. (2009): Plant biology: Signal advance for abscisic acid. Nature, 462: 575–576.
- Shimono H., Abe A., Aoki N., Koumoto T., Sato M., Yokoi S.H., Kuroda E., Endo T., Saeki K., Nagano K. (2016): Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice. Physiologia Plantarum, 157: 175–192.
- Tommasini T., Svensson J.T., Rodriguez E.M., Wahid A., Malatrasi M., Kato K., Wanamaker S., Resnik J., Close T.J. (2008): Dehydrin gene expression provides an indicator of low temperature and drought stress: Transcriptome-based analysis of barley (*Hordeum vulgare* L.). Functional & Integrative Genomics, 8: 387–405.
- Tseng G.C., Ghosh D., Feingold E. (2012): Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Research, 40: 3785–3799.
- Tunc-Ozdemir M., Miller G., Song L., Kim J., Sodek A., Koussevitzky S., Misra A.N., Mittler R., Shintani D. (2009): Thiamin confers enhanced tolerance to oxidative stress in *Arabidopsis*. Plant Physiology, 151: 421–432.
- Ueda K., Matsuura H., Yamaguchi M., Demura T., Kato K. (2012): Genome-wide analyses of changes in translation state caused by elevated temperature in *Oryza sativa*. Plant and Cell Physiology, 5: 1481–1491.
- Wasternack C., Kombrink E. (2010): Jasmonates: Structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chemical Biology, 5: 63–77.
- Xue G.P., Loveridge C.W. (2004): HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant Journal, 37: 326–339.
- Zhou J., Li F., Wang J.L., Ma Y., Chong K., Xu Y.Y. (2009): Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in *Arabidopsis*. Journal of Plant Physiology, 166: 1296–1306.

Received: August 26, 2022 Accepted: November 7, 2022 Published online: January 24, 2023