Identification of known leaf rust resistance genes in bread wheat cultivars from China

Xiaocui Yan¹, Takele-Weldu Gebrewahid², Rui Dong¹, Xing Li¹, Peipei Zhang¹, Zhanjun Yao³*, Zaifeng Li¹*

Citation: Yan X., Gebrewahid T.-W., Dong R., Li X., Zhang P., Yao Z., Li Z. (2021): Identification of known leaf rust resistance genes in bread wheat cultivars from China. Czech J. Genet. Plant Breed., 57: 91–101.

Abstract: Leaf rust caused by *Puccinia triticina* Eriks. (*Pt*) is one of the most devastating fungal pathogens affecting wheat (*Triticum aestivum* L.) production worldwide. Deployment of resistant cultivars is the most environmentally friendly approach to control the disease. In this study, thirty-seven wheat lines from the Hubei and Shaanxi provinces in China were evaluated for seedling resistance in the greenhouse using eighteen *Pt* races. These lines were also tested for slow rusting resistance in the field in the 2014 to 2018 growing seasons. Eleven molecular markers closely associated with known *Lr* genes were used as part of the postulation process. Seven known *Lr* genes, *1*, *13*, *18*, *14a*, *26*, *34* and *46* either singly or in combination were postulated in twenty-five cultivars. *Lr1* and *Lr26* were the most commonly identified genes detected in thirteen and ten cultivars, respectively. *Lr13* and *Lr46* were each found in four and five cultivars. *Lr34* was present in three cultivars. *Lr18* and *Lr14a* were identified in cultivar Xi'nong 538. Six cultivars displayed slow rusting resistance in the field tests. The resistant cultivars identified in the present study can be used as resistance parents in crosses aimed at pyramiding and the deployment of leaf rust resistance genes in China.

Keywords: adult plant resistance; gene postulation; molecular markers; Triticum aestivum

Bread wheat provides about 20% of the calories consumed by humankind (Fu et al. 2009). Wheat leaf rust caused by *Puccinia triticina* Eriks. (*Pt*), is one of the most important wheat diseases in many regions worldwide. This disease occurs in almost all wheat-growing areas, including North America, Europe, Asia, Australia, etc. (Dehne & Oerke 1998), and causes severe yield losses ranging from 30 to 50% (McIntosh et al. 1995). A particularly severe leaf rust epidemic in north-western Mexico caused an estimated yield loss of up to 70% during the 1970s (Dubin & Torres 1981). Widespread damaging leaf rust epidemics in China

were recorded in 1969, 1973, 1975 and 1979 (Dong 2001; Li et al. 2014). In 2012 and 2015, leaf rust caused destructive yield losses in the major wheat production regions of China, especially in North China (Zhou et al. 2013; Peng et al. 2016). Deployment of resistant cultivars is an economical and environmentally friendly way to control wheat leaf rust. To ensure the continuing effectiveness, it is important to identify and utilise new sources of leaf rust resistance (*Lr*) genes in wheat breeding programmes.

The principle of gene postulation is based on the gene-for-gene concept proposed by Flor (1955) to

¹Department of Plant Pathology, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, P.R. China

²College of Agriculture, Aksum University, Shire-Indaslassie, Tigray, Ethiopia

³College of Agronomy, Hebei Agricultural University, North China Key Laboratory for Crop Germplasm Resources of China's Education Ministry, Baoding, Hebei, P.R. China

^{*}Corresponding authors: yzhj201@aliyun.com; lzf7551@aliyun.com

identify resistance genes to the disease possibly present in the tested cultivars. A specific resistance gene in a host cultivar can be postulated from the response array produced by a series pathogen races with known avirulence/virulence characteristics. In addition, many resistance genes can be postulated using molecular markers although not all markers are fully diagnostic of the gene to which they are linked. Lr genes with reliable markers include 1, 10, 9, 19, 20, 24, 34, and 46. Numerous researchers have used these multi-race tests to postulate the Lr genes in different sets of wheat cultivars. For example, Yuan et al. (1992) identified the Lr genes 1, 3, 3bg, 9, 10, 13, 16, 23, 26, and 34 in forty-seven wheat cultivars using seventeen Pt races. Gebrewahid et al. (2017) identified twelve *Lr* genes, 1, 26, 3ka, 11, 10, 2b, 13, 21, 34, 37, 44, and 46 in eighty-three Chinese common wheat cultivars using eighteen Pt races. Wu et al. (2019) postulated six *Lr* genes (1, 26, 33, 34, 45 and 46) in forty-four wheat accessions using twenty Pt races.

Currently, there is limited information regarding leaf rust resistance genes in the leading contemporary cultivars grown in some regions of China. In this study, thirty-seven wheat cultivars grown in the Hubei and Shaanxi provinces were subjected to multi-race seedling tests, field tests and molecular marker detection. The objective of this study was to identify Lr genes in thirty-seven wheat cultivars from China.

MATERIAL AND METHODS

Plant materials and Pt races. Thirty-seven wheat cultivars from the Shaanxi and Hubei were used in this study. The regions and pedigrees of the thirtyseven cultivars are listed in Table 1. All the cultivars were tested for seedling response using eighteen Pt races in the greenhouse (Tables 2 and 3), and for slow rusting to leaf rust in the field during the 2014 to 2018 growing seasons. The International Maize and Wheat Improvement Center (CIMMYT) line, Saar with typical slow leaf rusting (Lillemo et al. 2008; Zhuang et al. 2009) and the highly susceptible line, Zhengzhou 5389 (final disease severity (FDS) > 90%) were used as the slow rusting and susceptible controls, respectively. Thirty-six lines with known Lr genes were utilised as a reference base to compare the seedling infection types (ITs) produced by each test line (Table 2). All the Pt races were named following the three-letter coding system of Long and Kolmer (1989), with the addition of a fourth letter for the fourth set of test differentials (http://www.ars.usda.gov/SP2 User Files/ad _hoc/36400500 Cereal rusts/pt nomen.pdf). The seeds of all the thirty-seven test cultivars, thirty-six differential lines with known leaf rust resistance genes, susceptible line Zhengzhou 5389, and CIMMYT line Saar were provided by the Wheat Rust Laboratory of Hebei Agricultural University.

Seedling test. All the cultivars were planted in a greenhouse and inoculated with eighteen Pt races for the gene postulation (Tables 2 and 3). The gene postulation was conducted following the method described by Singh et al. (1999) with minor modifications. The seedling inoculations were performed by brushing urediniospores from sporulating susceptible seedlings onto the test seedlings when the first leaves were fully expanded. The inoculated seedlings were placed in plastic-covered cages and incubated at 18 °C and 100% relative humidity (RH) for 24 h before being transferred to a growth chamber maintained with 12 h light/12 h darkness at 18 °C to 20 °C with 70% RH. The ITs were scored 10 to 14 days postinoculation according to the 0 to 4 infection type scale as modified by Roelfs et al. (1992).

Adult plant tests. All the thirty-seven cultivars, along with the susceptible control, Zhengzhou 5389 and the slow rusting check, Saar were planted in a randomised complete block design with two replicates at Zhoukou, in Henan Province and Baoding, in Hebei Province during the 2014 to 2018 cropping seasons. Approximately fifty seeds of each line were sown in 1.5 m single-row plots with 0.3-m spacing. Spreader rows of Zhengzhou 5389 were planted perpendicular and adjacent to the test rows. The field inoculation was conducted using a mixture of an equal amount of urediniospores from the FHRT, THTT and THJT Pt races suspended in 0.03% Tween 20 onto the spreader rows at the tillering stage. The disease severities as a percentage of the leaf area covered with uredinia were scored three times at about the 1-week interval with the first scoring 4 weeks after inoculation (Feekes growth stage 10) in each environment according to the modified Cobb scale (Peterson et al. 1948). The FDS was collected when the susceptible control, Zhengzhou 5389 was fully infected. The FDS data evaluation to leaf rust response was conducted following the methods described by Li et al. (2010).

Statistical analysis. The analysis of variance (ANOVA) and for determining the least significance

differences (LSDs) for comparing the FDS values among the cultivars were performed using the IBM SPSS Statistics 19.0 software. Cultivars susceptible to the mixed Pt races at the seedling stage and having FDS values significantly lower than the slow rusting control, Saar in the field trials were considered to be slow rusting cultivars.

Molecular makers testing. The genomic DNA was extracted following the cetyltrimethyl-ammonium bromide (CTAB) method (Sharp et al. 1988). Eleven molecular markers reported as diagnostic or closely linked to nine *Lr* genes 1, 9, 10, 19, 20, 24, 26, 34

and 46 were used to test all the cultivars (Table 3). The polymerase chain reaction (PCR) assay was conducted following the protocol of Helguera et al. (2000), in a 20 μ L reaction volume containing: 10 μ L of 2 × TaqPCR Master Mix (Tiangen Biochemical Incorporation, Beijing), 6 μ L of ddH₂O, 2 μ L (4 mol per μ L) of the primer, and 2 μ L 4 ng/ μ L of the template DNA. All PCR amplification conditions are listed in Table 4. The amplified products were detected by 1.5% agarose gel electrophoresis or 12% non-denaturing polyacrylamide gel electrophoresis in the case of Lr46.

Table 1. The region and pedigree of 37 Chinese wheat cultivars tested for the leaf rust response

Line No.	Genotype	Region	Pedigree	Line No.	Genotype	Origin	Pedigree
1	E'mai 580	Hubei	(Taigu sterile lines)/ (wheat line 957565)	20	Shaanmai 139	Shaanxi	Xiaoyan 22 × 94156/ N9134 F1
2	E'mai 17	Hubei	E'mai 12 variation plant	21	Xi'nong 538	Shaanxi	Lankao 90(6)52-30/ Xiaoyan 6/Huaihe 9412
3	E'mai 12	Hubei	750025-12/E'mai 6	22	Xiaoyan 166	Shaanxi	87135-1-3-2-1-2/88111
4	E'mai 18	Hubei	SKUA/865146//E'mai 11	23	Shaannong 138	Shaanxi	Xinmai 9/HangShaan 354
5	Xi'nong 291	Shaanxi	(Xiaoyan 5) 4DN/ hexaploid triticale WOH45	24	Xiaoyan 54	Shaanxi	Xiaoyan 6
6	Xiaoyan 22	Shaanxi	(Xiaoyan 6/775-1)/ Xiaoyan 107	25	Shaan 253	Shaanxi	Shaan 229/Shaan 213
7	Shaan 150	Shaanxi	(4/6811(2)F7/8435-1-1-8) F1/Xiaoyan 6	26	Xi'nong 6028	Shaanxi	Jingyan 60/Zhongnong 28
8	Gaoyou 503	Shaanxi	78506/84s504	27	Shaanmai 159	Shaanxi	Xiaoyan 597/89605
9	Xi'nong 88	Shaanxi	Aegilops variabilis cytoplasm	28	Xiaoyan 216	Shaanxi	Lankao 906/ Xiaoyan 22
10	Xi'an 93991	Shaanxi	NA	29	Xi'nong 2611	Shaanxi	Shaan229/ [84(14)43/83(2)3-3]/ (Xinong65 × Xiaoyan)
11	E'mai16	Shaanxi	The variation of 7023 plant	30	Shaan 558	Shaanxi	Xiaoyan 22/v9511
12	Xi'nong 2000	Shaanxi	Xi' nong 2611/386/ Xiaoyan22/Shaan 354	31	Xi'nong 9871	Shaanxi	Xinong 2208/Xiaoyan 22
13	Xiaoyan 4	Shaanxi	Fengchang 1/Xiaoyan 759	32	Xi'nong 889	Shaanxi	E Han-4/(Xiaoyan 6/ Xiaoyan 83352)
14	Shaan 627	Shaanxi	NA	33	Xiaoyan 228	Shaanxi	NA
15	Xi'nong 223	Shaanxi	Xi'nong 389 variation plant	34	Xiaoyan 319	Shaanxi	NA
16	Xi'nong 126	Shaanxi	NA	35	Shaan 160	Shaanxi	Shaan 213/winter wheat lines 167-6-4
17	Shaannong 981	Shaanxi	NA	36	Shaanmai 175	Shaanxi	NA
18	Xi'nong 3517	Shaanxi	Xi'nong 1376/Xi'nong 88	37	Shaan 512	Shaanxi	Shaanmai 150(A2)
19	Shaanken 6	Shaanxi	Lankao 906/Xiaoyan 22				

NA - not available

Table 2. Infection types produced by 36 reference lines with the single leaf rust resistance genes inoculated with 18 *Puccinia triticina* (*Pt*) races

							ı		Infe	ection	ı types ^a	to <i>Pt</i> ra	ces						
No.	Lr gene(s)	PH	TH	PH	KH	PH	THTT	KH	FH	FH	PHTT	THTT	PHTT	FH	FHHT	FHHT	TG	FH	FG
	gene(s)	GQ	JT	JT	JS	JS	I	НТ	RT	JQ	I	II	II	TR	I	II	GT	TT	MT
1	TcLr1	4	3+	3+	;1	4	4	1	1	1	4	4	4	1	1	1	4	1	1
2	TcLr2a	1	3+	2+	3	1	4	4	1	1	1	4	1	0,;	1	1	4	;	1
3	TcLr2C	4	4	4	3+	4	4	3+	4	4	4	4	4	3+	4	4	3+	3+	4
4	TcLr3	4	4	4	3+	4	4	4	4	4	4	4	4	4	4	4	3	4	4
5	TcLr9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	TcLr16	4	4	4	4	4	4	4	4	4	3+	4	3	3	3	3	3	3+	3+
7	TcLr24	;	;	;	;	;	;	;	;	;	;	;	;	;	;	;	;	0	0
8	TcLr26	3+	3+	4	4	4	4	4	4	4	3	3	3	3	3	3+	2	3+	2
9	TcLr3ka	1	1	1	2	;, 1	3	1	4	1	3	3	3c	3+	2	2	1	3	3
10	TcLr11	4	4	3+	3	3	4	3	4	4	4	4	3c	4	3+	3	3+	3+	2+
11	TcLr17	2	3c	2+	1	3	4	1	1	1	3+	4	3	3	2+	1	2+	3	2
12	TcLr30	1	1	2+	1	1	3+	3c	3	1	3+	4	4	4	3+	4	1	3	4
13	TcLrB	4	3+	4	4	4	4	3+	4	4	4	4	3	4	4	3+	4	3+	4
14	TcLr10	3+	4	4	4	4	4	3+	4	4	4	3c	4	3	3	3	4	4	4
15	TcLr14a	X	4	3+	4	3+	4	4	3+	X	4	3+	4	X	3+	3	3+	3+	3+
16	TcLr18	1	3+	3	1	2	3	3+	3	2	4	4	4	3	4	4	3+	4	3+
17	TcLr2b	2	4	3+	4	3+	3+	3+	2+	3	3+	4	3	3+	3+	3	3+	4	3+
18	TcLr3bg	4	4	3+	4	4	4	3+	3+	3+	4	4	3+	3	3+	3	3+	4	4
19	TcLr13	3	3	3	3	4	3	3+	3	3	3	4	2	3	2	3	3+	2	2
20	TcLr14b	4	4	4	4	4	4	3+	4	4	4	4	3	4	4	3	4	4	4
21	TcLr15	4	1	1	1	3+	4	1	1	1	1	4	1	3	1	1	1	2	1, 2
22	TcLr19	0	;	0	0	0	0	0	;	0	0,;	0	;	0	;	0	0	0	0
23	TcLr21	2	4	3	3	4	3	3	;, 1	4	3+	3	3	3	4	3	2	3+	2+
24	TcLr20	1	1, 2	1	1, 2	1	1	1, 2	;	1	1	1, 2	3	0	3+	1	3+	2+	1
25	TcLr23	1, 2	1	3	1	1	3	3	2+	3	3	1	1	1	1	1	3+	1	1
26	TcLr28	0	0	0	0	0	0	0	0	0	;	0	;	0	0,;	0	0	;	;
27	TcLr29	1	1	1	2	3	1	2	2	2	1	2	;	2	3	3	1	3	2
28	TcLr33	3+	3+	3+	3+	3+	4	3+	4	3+	4	4	4	3	3+	3+	3+	3+	3
29	TcLr36	1	1	1	1	1	1	1	1	1	3	1	2	1	1	1	3	1	1
30	TcLr39	3	2+	2+	2	3+	3	1	2	1	4	4	3	3	2	2	4	1	1
31	TcLr42	3	3	3	2	1	2	3	3+	3	1	1	2	2	2	3	1	3+	3
32	TcLr44	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	3+	3	4
33	TcLr45	1	1	1	;, 1	1	1	1	3	;, 1	1	1	1	1	1	1	3+	1	1
34	TcLr47	0	0	0	0	0	0	0	0	0	;	0	;	;	;	;	;	0	;
35	TcLr51	;	;	;	0	;	;	;	;	;	1	1	;	1	1	;	1	1	;
36	TcLr53	0	0	0	0	0	0	0	0	0	;	0	;	;	;	;	;	;	0,;

 $^{^{}a}$ According to the 0–4 Stakman scale modified by Roelfs et al. (1992); 0 – no flecks or uredinia, ; – hypersensitive flecks, 1 – small uredinia with necrosis, 2 – small uredinia with chlorosis, 3 – moderate size uredinia, 4 – large uredinia, + indicates slightly larger uredinia, C – more chlorosis than normal for the infection type, X – random distribution of variable-sized uredinia

Table 3. Seedling infection types and the presence or absence of the Lr genes in 37 Chinese wheat cultivars based on the gene postulation using 18 Puccinia triticina (Pt) races and molecular markers

	Lr gene based	Lr gene based									Infec	tion 1	Infection types ^a to Pt races	o Pt ra	ses						
No. ^b		on gene marker	Lr gene(s)	PH	TH	PH	KH	PH TI	THT	KH.	HH I	FH	PHTT 7	THT	PHTT	FH	FHHT	FHHT	J. TG	H	FG
	postulation	detection		GQ	ΙΊ	JT	JS	JS	I	HT	RT)	β	I	II	II	TR	Ι	Π	GT	LL	MT
1	+	none	unknown APR genes	4	4	4	4	4	4	4	4	4	3+	4	3+	4	33	4	33	4	3+
2	Lr26, Lr13, +	Lr26	$Lr26^{\circ}, Lr13^{d}, +$	4	3	3+	3	4	3+	4	3	4	2	2	2	1	2	1	2+	2	1
33	+	none	unknown seedling resistance gene	4	4	4	4	4	4	4	4	4	3+	4	2+	2+	3	3+	4	3+	2+
4	Lr1, Lr26, +	Lr1, Lr26	LrI^{c} , $Lr26^{c}$, +	4	4	4	2	4	4	2+		2+	2	4	3	2+	2	2+	2+	2+	2+
2	+	none	unknown APR genes	4	3	33	3+	4	3+	4	33	4	4	4	3	3+	33	3	3+	3+	3
9	Lr1, Lr26, +	Lr1, Lr26	LrI^{c} , $Lr26^{c}$, +	4	4	4	2	4	4	7	2+	7	3	4	3	2	2+	2+	2+	2	2
7	LrI, +	LrI	LrI^{c} , +	4	3+	4	2+	4	3	2+	2+	1 6	4	3	4	2	2	2+	4	2+	2+
8	LrI, LrI3, +	LrI	<i>LrI</i> ^c , <i>LrI3</i> ^d , <i>Lr46</i> ^e , +	3+	4	4	2	4	4		2+	2 2	4	3	2+	2+	2	2	4	2	2+
6	+	Lr46	$Lr46^{\rm e}$, +	3+	4	4	4	4	4		4	4	4	4	3+	4	4	4	4	4	3+
10	LrI, LrI3, +	LrI	$LrI^{c}, LrI3^{d}, +$	4	4	4	2	4	4	2c	2+	2	3	4	2	2+	2	2	3+	2+	2
11	+	none	unknown APR genes	4	4	4	4	4	4	4	4	4	4	4	4	3+	3	4	3	4	3+
12	+	none	unknown APR genes	4	3+	3+	3+	4	4	4	4	4	4	4	3+	3	4	3	3+	3	3+
13	LrI, +	LrI	LrI^{c} , +	4	4	4	2+	4	3+	2+	2	2	3	4	3	2c	2+	2	3+	2+	1
14	+	none	unknown seedling resistance gene	3	П	1, 2	1, 2 1	1, 2	1	1	4	1	4	7	2	33	2	1	3	3	1
15	+	none	unknown APR genes	4	4	4	33	3+	4	4	4	4	4	33	3+	3	4	4	4	4	4
16	+	none	unknown APR genes	4	4	4	3+	4	4	4	4	4	3	4	3+	3	4	4	4	3+	4
17	LrI, +	LrI	LrI^{c} , +	33	4	2+	1	4		2+	1	1	3	3	3	2+	2+	7	3+	2	1
18	+	Lr46	$Lr46^{\rm e}$, +	4	4	4	4	4		3+	4	4	4	3+	3+	3	3+	3	4	3+	3+
19	Lr26, +	Lr26	$Lr26^{c}$, +	4	3	4	4	4	3	3+	4	4	3	4	4	3	3	3	2+	3+	2+
20	+	none	unknown seedling resistance gene	4	4	4	4	4	4	3+	4	4	4	4	4	4	3	4	4	2	33
21	Lr13, Lr18, Lr14a, +	+ none	$Lr13^{\rm d}, Lr18^{\rm d}, Lr14a^{\rm d}, +$	1	; 1	1	1 1	1, 2	4	1	4	••	3+	2	2+	1	2	1	3c	2	2+
22	Lr26, +	Lr26	$Lr26^{\circ}$, +	3	3	3+	3	4	3	4	4	4	3	3	3	3	3	3	2+	3	2+
23	Lr26, +	Lr26	$Lr26^{c}$, +	3+	3	33	3+	4	3	4	4	4	3	4	3	3	3	3	2+	3	2+
24	Lr1, +	LrI	LrI^{c} , +	3+	4	33	2+	4	4	2	_	2+	3+	4	3+	2+	2	7	3+	2+	2
25	LrI, +	Lr1, Lr46	LrI^{c} , $Lr46^{e}$, +	4	4	3+	2	4	4	2	-	2+	died	4	3+	2+	2+	2	3+	2	2+
26	+	Lr34, Lr46	<i>Lr34</i> e, <i>Lr46</i> e	4	4	4	4	4	4	4	4	4	4	3+	3	3+	4	4	3+	3+	3+
27	Lr26, +	Lr26, Lr34	$Lr26^{c}$, $Lr34^{e}$, +	3+	4	3	3	4	4	4		3+	4	4	3	3	4	3+	2+	3	2+
28	LrI, +	LrI	LrI^{c} , +	4	3	3	2+	3	33	2+	2+	2	3+	4	3	2+	2	2+	3	2	2+
29	Lr26, +	Lr26, Lr34	$Lr26^{\circ}, Lr34^{\circ}, +$	3	4	3	3+	3+	3	3	4	4	3	1	2+	2+	1	2+	2+	3	7
30	Lr26, +	Lr26	$Lr26^{\circ}$, +	4	4	3		3	4	4		4	3+	4	3+	3	33	3+	2+	3+	2+

Table 3 to be continued

	Lr gene based Lr gene based	Lr gene based									Infe	ction	types ^a 1	Infection types ^a to Pt races	ses						
No.b	on gene	on gene marker	$Lr \mathrm{gene}(\mathrm{s})$	PH	ΗL	PH	KH	PH .	THT	ΚΉ	FH	ΕΉ	PHTT '	THT 1	PHTT	FH	FHHT I	FHHT	DL	FH	FG
	postulation	detection		GQ	ΙΊ	ΙΊ	JS	JS	П	HT	RT	δ	П	II	II	TR	I	II	ВT	$_{ m LL}$	MT
31	LrI, +	LrI	LrI^{c} , +	4	3+	4	2	4	4	2+	2	1	2+	4	3+	2+	2	2	3+	2+	2
32	+	none	unknown APR gene	4	4	4	4	4	4	4	4	1	4	4	4	3	4	4	3+	3+	3+
33	Lr26, +	Lr26	$Lr26^{c}$, +	4	4	4	3+	4	4	4	4	4	3	3	4	3	33	3+	2+	3	2
34	LrI, +	LrI	LrI^{c} , +	4	4	2	2+	4	1	2	2	2	3с	4	4	2+	2+	2+	3+	2	2
35	LrI, +	LrI	LrI^{c} , +	4	4	3+	2	4	4	2+	2	2	3+	4	4	2c	2+	2+	3	2+	2+
36	+	none	unknown APR genes	4	4	4	4	4	4	4	4	4	4	4	4	3	33	3	3	33	33
37	+	none	unknown APR genes	4	4	4	4	4	4	4	4	4	4	4	4	3	4	3+	3+	4	33
38	I	none	CK	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

According to the 0-4 Stakman scale as modified by Roelfs et al. (1992); 0 - no flecks or uredinia,; - hypersensitive flecks, 1 - small uredinia with necrosis, 2 - small uredinia with chlorosis, 3 - moderate size uredinia, 4 - large uredinia, + indicates slightly larger uredinia, C - more chlorosis than normal for the infection type, X - random distribution of variable-sized uredinia; ^pline numbers corresponding to those in Table 1; costulation of the Lr genes based on the gene postulation and molecular marker; dostulation of the Lr genes based on the gene postulation; $^{\circ}$ detection of the Lr genes based on the molecular marker and adult plant resistance

RESULTS

Lr genes postulated and molecular marker detection. The infection types of thirty-six differentials (Table 2), thirty-seven wheat cultivars and the susceptible control, Zhengzhou 5389 were evaluated with eighteen Pt races at the seedling stage in a greenhouse (Table 3). Zhengzhou 5389 showed IT 4 with all eighteen Pt races. The differential lines, containing Lr9, Lr19, Lr24, Lr28, Lr47, Lr51, and Lr53 conferred a resistance response to all the Pt races, however, the differential lines carrying the Lr genes 2c, 3, 16, B, 3bg, 14b, 33, and 44 were susceptible to all the Pt races, hence, none of these genes could be postulated based the present response arrays. Twenty-one differential lines, Lr1, Lr2a, Lr26, Lr3ka, Lr11, Lr17, Lr30, Lr10, Lr14a, Lr18, Lr2b, Lr13, Lr15, Lr20, Lr21, Lr23, Lr29, Lr36, Lr39, Lr42 and Lr45 showed differential responses, and one or more of those genes could be postulated. The susceptible check, Zhengzhou 5389 was highly susceptible to all the Pt races (Table 3). Based on the IT arrays, Lr genes 1, 13, 14a, 18 and 26, either singly or in combination were postulated in twentytwo cultivars (Table 3). Fifteen cultivars were found with unknown resistance gene(s).

Lr26 was present in ten cultivars (Table 3). Five cultivars (Shaanken 6, Xiaoyan 166, Shaannong 138, Shaan 558 and Xiaoyan 228) contained only Lr26 because they were only resistant to two Lr26 avirulent races (TGGT and FGMT) and susceptible with the other sixteen Pt races. Two cultivars (E'mai 18 and Xiaoyan 22) contained Lr26 combined with Lr1 because they showed resistance to the Lr26 and Lr1 avirulent Pt races. Based on their resistant responses to other races, three cultivars (E'mai 17, Shaanmai 159 and Xi'nong 2611) had Lr26 and other Lr genes in combination. Thirteen cultivars had Lr1 based on the IT reactions (Table 3). Eight cultivars (Shaan 150, Xiaoyan 4, Shaannong 981, Xiaoyan 54, Xiaoyan 216, Xi'nong 9871, Xiaoyan 319 and Shaan 160) carried Lr1 alone because, like the Lr1 control, they were resistant to the same nine avirulent races (KHJS, KHHT, FHRT, FHJQ, FHTR, FHHTI, FHHTII, FHTT, and FGMT). Five lines contained *Lr1* combined with other Lr genes (13, 26 or 46). All the cultivars with Lr26 and Lr1 were confirmed by the respective molecular markers for Lr26 and Lr1 (Table 3). Four cultivars contained Lr13 because they had intermediate reactions to four Lr13-avirulent races (PHTTII, FHHTI, FHTT, and FGMT) (Table 3). Two cultivars, Gaoyou

Table 4. Primer sequences and PCR amplification programmes for the different primer combinations

		Primer	- 5	Genetic distance	Size	,
Lr gene	Name	Sequence (5'-3')	Cycle condition	(cM)	(pb)	Kererence
Lr1	WR003F WR003R	GGGACAGAGCCTTGGTGGA GACGATGATGATTTGCTGCTGG	94 °C 5 min; 35 cycles (94 °C 1 min; 55 °C 1 min; 72 °C 1 min); 72 °C 10 min; 10 °C forever	co-segregated	745	Qiu et al. (2007)
Lr9	J13/1 J13/2	TCCTTTTATTCCGCACGCCGG CCACACTACCCCAAAGAGACG	94 °C 6 min; 35 cycles (94 °C 1 min; 68.5 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	co-segregated	1 100	Schachermayr et al. (1994)
Lr10	Fl.2245 <i>Lr10-</i> 6/r2	GTGTAATGCATGCAGGTTCC AGGTGTGAGTTATGTT	94 °C 3 min; 35 cycles (94 °C 45 s; 60 °C 45 s; 72 °C 30 s); 72 °C 3 min; 10 °C forever	co-segregated	282	Schachermayr et al. (1997)
Lr19	SCS265-F SCS265-R	GGCGGATAAGCAGAGCAGAG GGCGGATAAGTGGGTTATGG	94 °C 5 min; 35 cycles (94 °C 1 min; 65 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	co-segregated	525	Gupta et al. (2006)
Lr19	SCS253-F SCS253-R	GCTGGTTCCACAAAGCAAA GGCTGGTTCCTTAGATAGGTG	94 °C 5 min; 35 cycles (94 °C 1 min; 60 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	co-segregated	736	Gupta et al. (2006)
Lr20	STS638-L STS638-R	ACAGCGATGAAGCAATGAAA GTCCAGTTGGTTGATGGAAT	94 °C 5 min; 35 cycles (94 °C 1 min; 60 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	complete linkage	200	Neu et al. (2002)
Lr24	J09/1 J09/2	TCTAGTCTGTACATGGGGGC TGGCACATGAACTCCATACG	94 °C 5 min; 35 cycles (94 °C 1 min; 60 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	complete linkage	315	Schachermayr et al. (1995)
Lr26	ω-secalinF ω-secalinR	ACCTTCCTCATCTTTGTCCT CCGATGCCTATACCACTACT	94 °C 5 min; 35 cycles (94 °C 1 min; 65 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	co-segregated	1 100	Chai et al. (2006)
Lr26	O11B5 O11B3	GGTACCAACAACAACACCC GTTGCTGAGGTTGGTTC	94 °C 5 min; 35 cycles (94 °C 1 min; 65 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	co-segregated	636	Froidmont (1998)
Lr34	csLv34F csLv34R	GTTGGTTAAGACTGGTGATGG TGCTTGCTATTGCTGAATAGT	94 °C 5 min; 35 cycles (94 °C 1 min; 55 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	0.4	150	Lagudah et al. (2006)
Lr46	csLV46G22-F csLV46G22-R	TCGACTTTGGAATGGAGTTGC GGCGAAGATGCCATCATCCACCAG	94 °C 5 min; 35 cycles (94 °C 1 min; 60 °C 1 min; 72 °C 2 min); 72 °C 10 min; 10 °C forever	complete linkage	520	Suenaga et al. (2001)

Table 5. Analysis of variance of the final leaf rust severities for 37 test lines and Saar and Zhengzhou 5389 controls tested over four growing seasons

Source	df	MS	F	P value
Cultivars	38	4 710.609	3 740.173**	< 0.001
Years	3	8 496.879	6 746.431**	< 0.001
Places	1	30 240.692	2 4010.787**	< 0.001
Replications	1	4.858	3.857	0.051
Cultivars × replications	38	1.357	1.077	0.359
Cultivars × environments	230	554.123	439.967 **	< 0.001
Error	234	1.259		

 $R^2 = 0.999$; **significance at level 0.01 probability; df – degree of freedom; MS – mean square

503 and Xi'an 93991, contained Lr13 combined with Lr1.Lr13 and Lr26 were present in E'mai 17. Xi'nong 538 contained Lr13, Lr18 and Lr14a in combination because they were resistant to races that were avirulent to the respective single gene controls. E'mai 12, Shaanmai 139 and Shaan 627 were resistant to some races and their resistance could not be attributed to any known Lr gene. E'mai 580, Xi'nong 291, Xi'nong 88, E'mai16, Xi'nong 2000, Xi'nong 223, Xi'nong 126, Xi'nong 3517, Xi'nong 6028, Xi'nong 889, Shaanmai 175 and Shaan 512 were susceptible to all the races (Table 3).

Nine molecular markers, eight STS and one SCAR closely linked to *Lr1*, *Lr9*, *Lr10*, *Lr19*, *Lr20*, *Lr24*, *Lr26*, *Lr34* and *Lr46* were used to genotype all the thirty-seven cultivars (Table 4). No line carried *Lr9*, *Lr10*, *Lr19*, *Lr20*, or *Lr24* based on the molecular marker

detection and gene postulation. The molecular marker tests predicted that Lr46 was present in five cultivars Gaoyou 503, Xi'nong 88, Xi'nong 3517, Shaan 253 and Xi'nong 6028, And Lr34 was detected in three cultivars (Xi'nong 6028, Shaanmai 159, and Xi'nong 2611) (Table 3). The cultivars containing Lr34 and Lr46 also showed symptoms of leaf tip necrosis (LTN) at the adult plant stage.

The combined results of the gene postulation and molecular marker detection indicated that seven Lr genes, 1, 26, 13, 14a, 18, 34, and 46, either singly or in combination were found in twenty-five lines, but twelve cultivars possibly contained unknown Lr gene(s) or lacked detectable Lr genes.

Adult plant resistance in field tests. The analysis of variance results of the FDS data (at P = 0.05) of the tested cultivar showed significant differences among

Table 6. Infection types (IT) in the seedling stage test with *Puccinia triticina* (*Pt*) races mixed *Pt* races and the mean final disease severity (FDS) in the field experiments with the same race in the 2014–2015, 2015–2016, 2016–2017 and 2017–2018 growing seasons for 37 wheat genotypes with the slow rusting resistance to leaf rust

		Seedling ITs				FSD (%	5)		
No.a	Cultivar (line)	to race	2014-	-2015	2015-	-2016	2016-	-2017	2017–2018
		mixture ^a	Baoding	Henan	Baoding	Henan	Baoding	Henan	Henan
2	Eʻmai 17	4	2.5	15	2.5	20	5	15	5
3	Eʻmai 12	4	2.5	17.5	2.5	20	1	15	35
16	Xiʻnong 126	4	12.5	25	12.5	15	5	1	15
17	Shaannong 981	4	10	35	10	7.5	5	5	15
27	Shaanmai 1591	4	20	7.5	20	15	1	20	10
36	Shaanmai 175	4	10	15	10	10	7.5	2.5	8.75
	Saar ^b	4	2.5	1	5	1.75	5	1	1
	Zhengzhou5389 ^c	4	100	100	100	100	100	100	100
LSD	(P = 0.05)						22.17		

^aLine numbers corresponding to those in Table 1; ^bslow rusting check; ^csusceptible check; *LSD* – least significance difference

the cultivar-environment interaction, cultivars, and environments, but there were not significant differences between the cultivar-replication interaction (Table 5). In all the cropping seasons, the mean value of the FDS of the susceptible check Zhengzhou 5389 and the slow rusting check Saar was 100% and 2.5%, respectively, indicating an adequate level of disease. Six cultivars exhibiting high ITs to the *Pt* races mixture in the seedling tests showed consistent slow leaf rusting resistance in the field (Table 6). Among those cultivars, Shaanmai 159 carried *Lr34* and none of them carried *Lr46*.

DISCUSSION

The postulation of resistance genes based on the response to multiple races in seedling tests is a quick and traditional method of gene identification across diverse genetic backgrounds (Mebrate et al. 2008); and can be significantly strengthened by molecular marker genotyping and pedigree analysis. Lr26 was derived from rye (Secale cereal L.) and located on the 1BR/1RS chromosome of wheat. Lr26 is widely present in Chinese wheat lines in a high frequency through the introduction of wheat germplasm such as Lovrin 13, Lovrin 10, Predgornaia 2, Kavkaz, and Neuzucht (Zhuang 2003). According to Zhou et al. (2004), the frequency of the 1BR/1RS translocation line in the northern winter wheat area was 59%, and its frequency in the Huanghuai winter wheat area was 42%. In the present study, ten cultivars contained Lr26 (Table 3). According to the pedigree analysis, Lr26 in Xiaoyan 22 might be derived from Fengchan 3. Because Fengchan 3 carried *Lr26* (Li & Yan 1985; Zheng 2019).

The Lr1 gene is widely distributed in various regions of the world such as Australia (McIntosh 1992), America (Kolmer et al. 2009) and Europe (Urbanovich et al. 2006). In China, Lr1 was reported in more than 500 wheat varieties (Liu et al. 2014). Singh et al. (2000) also reported a high frequency of Lr1 in Chinese cultivars and lines. In the present study, thirteen cultivars contained Lr1. The distribution frequencies of Lr1 in Chinese cultivars are from four founder wheat parents, viz. the Nanda 2419, Funo, Yanda 1817 and Bima 4 derivatives (Liu et al. 2014). Lr1 in Xiaoyan 216, Xi'nong 9871 and Xiaoyan 22 might be derived from Xiaoyan 22. Ren et al. (2012) reported that Xiaoyan 54, Xi'nong 9871, and Xiaoyan 22 contained Lr1. Lr34 and Lr46 are currently important leaf rust resistance genes in China and are the most widely assessed slow rusting leaf rust resistance genes (Yuan & Chen 2011). *Lr34* and *Lr46* might not be highly effective when they are found alone, but they contribute higher levels of resistance when used in combination with other resistance genes (Sui et al. 2016).

In the present study, six cultivars were identified to carry slow rusting leaf rust resistance genes (Tables 3 and 6). E'mai 17, E'mai 12, Xi'nong 126, Shaannong 981, Shaanmai 1591 and Shaanmai 175 had other known Lr genes or unknown Lr genes. Lr34, Lr46, Lr67 and Lr68 are APR Lr genes, the molecular markers co-segregated with or closely linked to these were used to test these cultivars (Wu et al. 2019). E'mai 17 carried Lr26 and Lr13, and this cultivar was found to have slow rusting based on the FDS. Lr26 had lost resistance, although originally Lr13 was described as an APR gene, which can be detected at the seedling stage especially at high temperatures (Pretorius et al. 1984). If Lr26 and Lr13 are found in combination, the resistance is significant.

The identified seedling or slow rusting *Lr* genes in the present tested wheat cultivars may facilitate the breeding process of Chinese wheat cultivars and might contribute to reducing the leaf rust damage in China.

CONCLUSION

In the study, seven Lr genes, 1, 13, 18, 14a, 26, 34 and 46 either singly or in combination were identified in twenty-five lines. Lr9, Lr10, Lr19, Lr20 and Lr24 were not identified in all the tested cultivars. The known Lr genes, 9, 19, 24, 28, 47, 51 and 53 were effective at all the plant growing stages. Five and three cultivars possessed Lr46 and Lr34, respectively. Six cultivars showed slow leaf rusting resistance in the field. The results of this study are useful to incorporate the resistance genes from the sources identified here into the Chinese facultative wheat genotypes to improve the genetic diversity of the cultivars.

REFERENCES

Chai J.F., Zhou R.H., Jia J.Z., Liu X. (2006): Development and application of a new co-dominant PCR marker for detecting 1BL/1RS wheat-rye chromosome translocations. Plant Breeding, 125: 302–304.

Dehne H.W., Oerke E.C. (1998): Impact of diseases and disease control on crop production. In: Hutson D.H.,

- Miyamoto J. (eds.): Fungicidal Activity: Chemical and Biological Approaches to Plant Protection. Chichester, Wiley: 1–21.
- Dong J.G. (2001): Agricultural Plant Pathology. Beijing, China Agriculture Press.
- Dubin H.J., Torres E. (1981): Causes and consequences of the 1976–1977 wheat leaf rust epidemic in north west Mexico. Annual Review of Phytopathology, 19: 41–49.
- Flor H.H. (1955): Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology, 45: 680–685.
- Froidmont D.D. (1998): A codominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science, 27: 229–232.
- Fu D.L., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., Sela H., Fahima T., Dubcovsky J. (2009): A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 323: 1357–1360.
- Gebrewahid T.W., Yao Z.J., Yan X.C., Gao P., Li Z.F. (2017): Identification of leaf rust resistance genes in Chinese common wheat cultivars. Plant Disease, 101: 1729–1737.
- Gupta S.K., Charpe A., Prabhu K.V., Haque Q.M.R. (2006): Identification and validation of molecular markers linked to the leaf rust resistance gene *Lr19* in wheat. Theoretical and Applied Genetics, 113: 1027–1036.
- Helguera M., Khan I.A., Dubcovsky J. (2000): Development of PCR markers for the wheat leaf rust resistance gene *Lr47*. Theoretical and Applied Genetics, 100: 1137–1143.
- Kolmer J.A., Long D.L., Hughes M.E. (2009): Physiologic specialization of *Puccinia triticina* on wheat in the United States in 2007. Plant Disease, 93: 538–544.
- Lagudah E.S., McFadden H., Singh R.P., Huerta-Espino J., Bariana H.S., Spielmeyer W. (2006): Molecular genetic characterization of the *Lr34/Yr18* slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114: 21–30.
- Li Z., Yan Z.L. (1985): Selection and utilization of dwarf wheat Xiaoyan 392 in breeding. Shaanxi Agricultural Science, 5: 27–28.
- Li Z.F., Xia X.C., He Z.H., Li X., Zhang L.J., Wang H.Y., Meng Q.F., Yang W.X., Li G.Q., Liu D.Q. (2010): Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 94: 45–53.
- Li Z.F., Lan C.X., He Z.H., Singh R.P., Rosewarne G.M., Chen X.M., Xia X.C. (2014): Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 54: 1907–1925.
- Lillemo M., Asalf B., Singh R.P., Huerta-Espino J., Chen X.M., He Z.H., Bjørnstad Å. (2008): The adult plant rust resistance loci *Lr34/Yr18* and *Lr46/Yr29* are important determinants of partial resistance to powdery mildew in

- bread wheat line Saar. Theoretical and Applied Genetics, 116: 1155–1166.
- Liu X.C., Lai Y.P., Liu X.J., Li J., Yuan J.E., Wang H.S., Feng Z.Y., Yang W.Y. (2014): Distribution and selective effects of *Lr1* gene in the wheat varieties derived from four founder breeding parents in China. Journal of Triticeae Crops, 34: 597–602.
- Long D.L., Kolmer J.A. (1989): A north American system of nomenclature for *Puccinia triticina*. Phytopathology, 79: 525–529.
- McIntosh R.A. (1992): Pre-emptive breeding to control wheat rusts. Euphytica, 63: 1–2.
- McIntosh R.A., Wellings C.R., Park R.F. (1995): Wheat Rusts: An Atlas of Resistance Genes. East Melbourne, CSIRO Publications.
- Mebrate S.A., Dehne H.W., Pillen K., Oerke E.C. (2008): Postulation of seedling leaf rust resistance genes in selected Ethiopian and German bread wheat cultivars. Crop Science, 48: 507–516.
- Neu C., Stein N., Keller B. (2002): Genetic mapping of the *Lr20-Pm1* resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 45: 737–744.
- Peng H., Lv G.Q., Wang J.R. (2016): Analysis on the characteristics and causes of main diseases of wheat in Henan Province in 2015. China Plant Protection, 36: 29–33.
- Pretorius Z.A., Wilcoxson R.D., Long D.L., Schafer J.F. (1984): Detecting wheat leaf rust resistance gene *Lr13* in seedings. Plant Disease, 68: 585–586.
- Qiu J.W., Schvrch A.C., Yahiaoui N., Dong L.L., Fan H.J., Zhang Z.J., Keller B., Ling H.Q. (2007): Physical mapping and identification of a candidate for the leaf rust resistance gene *Lr1* of wheat. Theoretical and Applied Genetics, 115: 159–168.
- Peterson R.F., Campbell A.B., Hannah A.E. (1948): A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26: 496–500.
- Ren X.L., Liu T.G., Liu B., Gao L., Chen W.Q. (2012): Multiplex PCR assay for detection of wheat leaf rust resistance genes *Lr9-Lr29* and *Lr19-Lr20* in 116 Chinese wheat cultivars (lines). Plant Protection, 38: 29–36.
- Roelfs A.P., Singh R.P., Saari E.E. (1992): Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico City, CIMMYT.
- Schachermayr G., Siedler H., Gale M.D., Winzeler H., Winzeler M., Keller B. (1994): Identification and localization of molecular markers linked to the *Lr9* leaf rust resistance gene of wheat. Theoretical and Applied Genetics, 88: 110–115.
- Schachermayr G.M., Messmer M.M., Feuillet C., Winzeler H., Winzeler M., Keller B. (1995): Identification of

- molecular markers linked to the *Agropyron elongatum*-derived leaf rust resistance gene *Lr24* in wheat. Theoretical and Applied Genetics, 90: 982–990.
- Schachermayr G., Feuillet C., Keller B. (1997): Molecular markers for the detection of the wheat leaf rust resistance gene *Lr10* in diverse genetic backgrounds. Molecular Breeding, 3: 65–74.
- Sharp P.J., Kreis M., Shewry P.R. (1988): Location of β -amylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 75: 286–290.
- Singh R.P., Chen W.Q., He Z.H. (1999): Leaf rust resistance of spring, facultative, and winter wheat cultivars from China. Plant Disease, 83: 644–651.
- Singh R.P., Huerta-Espino J., Rajaram S. (2000): Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytophthologica Sinica, 35: 133–139.
- Suenaga K., Singh R.P., Manilal H.M. (2001): Tagging of slow rusting genes for leaf rust, *Lr34* and *Lr46*, using microsatellite markers in wheat. JIRCAS Research Highlights, 2021: 8–9.
- Sui J.S., Wang H.L., Xin Z.H., Wang W., Chen T.Q., He Q.C. (2016): Detection of molecular markers of leaf rust resistance genes *Lr26*, *Lr34* and *Lr38* in 122 wheat varieties (lines). Seed, 5: 35–41.
- Urbanovich O.Y., Malyshev S.V., Dolmatovich T.V., Kartel N.A. (2006): Identification of leaf rust resistance genes in wheat (*Triticum aestivum* L.) cultivars using molecular markers. Russian Journal of Genetics, 42: 546–554.
- Wu H., Kang Z.H., Li X., Li Y.Y., Li Y., Wang S., Liu D.Q. (2019): Identification of wheat leaf rust resistance genes

- in Chinese wheat cultivars and the improved germplasms. Plant Disease, 101: 1729–1737.
- Yuan J.H., Chen W.Q. (2011): Evaluation of the effectiveness of main wheat leaf rust resistance genes in China. Journal of Triticeae Crops, 31: 994–999.
- Yuan J.H., Liu T.G., Chen W.Q. (1992): Postulation of leaf rust resistance genes in 47 new wheat cultivars (lines) at seeding stage. Scientia Agriculture Sinica, 22: 369–375.
- Zheng R.M. (2019): Molecular Detection and Genetic Derivation of 262 Chinese Wheat Microcore Germplasm against Leaf Rust. Yangling, Northwest A & F University.
- Zhou H.X., Xia X.C., He Z.H., Li X., Wang C.F., Li Z.F., Liu D.Q. (2013): Molecular mapping of leaf rust resistance gene *LrNJ97* in Chinese wheat line Neijiang 977671. Theoretical and Applied Genetics, 126: 2141–2147.
- Zhou Y., He Z.H., Zhang G.S., Xia L.Q., Chen X.M., Gao Y.C., Jing Z.B., Yu G.J. (2004): Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agronomica Sinica, 30: 531–535.
- Zhuang L.J., Li Z.F., Lillemo M., Xia X.C., Liu D.Q., Yang W.X., Luo J.C., Wang H.Y. (2009): QTL mapping for adult-plant resistance to leaf rust in CIMMYT wheat cultivar Saar. Scientia Agriculture Sinica, 42: 388–397.
- Zhuang Q.S. (2003): Chinese Wheat Improvement and Pedigree Analysis. Beijing, China Agriculture Press.

Received: January 24, 2021 Accepted: April 12, 2021 Published online: May 6, 2021