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Abstract: Fusarium ear rot in maize (Zea mays L.) is a serious disease in all maize-growing areas worldwide. A total
of 454 fungal strains were isolated from 69 commercial maize hybrids grown in Harbin, China, and comprised Fu-
sarium subglutinans (34.8%), E proliferatum (31.3%), E verticillioides (20%), E graminearum (9.7%), and E equiseti
(4.2%). Among them, a complex of multiple species, F subglutinans, F. proliferatum, and E verticillioides are the
dominant fungi causing ear rot. Among 59 commercial maize hybrids, eleven hybrids (18.6%) were found to be highly
resistant to Fusarium ear rot. Simple sequence repeat (SSR) analysis using six pairs of primers resulted in 24 repro-
ducible bands and cluster analysis separated the maize hybrids into eight groups. There was little genetic variation
associated with disease resistance. No correlation was found between genetic diversity and disease resistance.
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Maize (Zea mays L.) is one of the most important
and widespread cereal crops in the world (CHoO et al.
2014). Fusarium ear rot is a serious disease rampant
in all maize growing areas worldwide, and is caused
by multiple fungal species including Fusarium tem-
peratum, F. verticillioides, F. graminearum, F. andi-
yazi and F. proliferatum, etc. (PRESELLO et al. 2006;
BORAH et al. 2016; VENTURINI et al. 2017).

Control of Fusarium ear rot in maize using agro-
nomic and chemical measures is not very effective.
Therefore, development of maize genotypes with
resistance to ear rot is important to reduce yield loss
and most importantly to avoid mycotoxin contami-
nation of food and feed (KEBEBE et al. 2015, 2018),
which is a problem especially under heavy natural
infection with Fusarium spp. (PRESELLO et al. 2008).
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However, few highly resistant maize varieties have
been identified around the world (ZHANG et al. 2012).
REID et al. (1992) suggested that one sufficiently
aggressive isolate or a mixture of isolates should be
used to screen for resistance in breeding programs.

Simple sequence repeat (SSR) markers have wide
applicability for genetic analysis in crop improvement
strategies (INGHELANDT et al. 2010), using maize in-
bred lines and hybrids (BEpOYA et al. 2017; SA1YAD &
KuMAR 2018). However, the molecular processes and
gene regulation of the defence system relevant to ear rot
in maize remain poorly understood (YUAN et al. 2013).

Heilongjiang province is one of the major areas
of maize production in China, which is one of the
world’s three gold corn belts. Our objective was to
identify and analyse the Fusarium species causing
ear rot in maize, assess the resistance and investigate
the genetic diversity of commercial maize hybrids
in this region.

MATERIAL AND METHODS

Diseased maize ears were collected from 69 com-
mercial maize hybrids grown in the same location,
which had continuous maize cropping for six years,
in Harbin, Heilongjiang province, China, in 2015. To
determine the species of pathogens and the nature
of mixed infections, all diseased kernels (from one
ear/per cultivar) were isolated using tissue isola-
tion (VENTURINI et al. 2017). The pathogenicity of
all isolates obtained was determined on a leading
commercial maize hybrid (cv. Suiyu 10) using a silk
channel inoculation method described by KEBEBE et
al. (2015) in the field according to Koch’s postulates.

The pathogenic isolates were mainly identified
according to morphological characteristics (NEL-
SON et al. 1983). To select representative isolates,
molecular identification was conducted using primer
pair EF1-728F/EF1-986R (CARBONE & KOHN 1999).

For evaluating the resistance of 59 commercial
maize hybrids, the experiment was conducted twice at
the same place, which had continuous maize cropping
for six years, located in Harbin, China in May, 2015
and 2016. A split-plot design with three replications
was laid out. Each sub-plot consisted of 10-m long
rows with plant spacing of 0.20 and 0.45 m within
and between rows, respectively. Conventional man-
agement and fertilization were conducted during the
maize growth period.

The natural occurrence of ear rot in maize was
observed on 10 ears per plot at harvest time. Disease
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severities were scored visually, according to KEBEBE
et al. (2015) and slightly modified, measuring the
percentage of disease area on full ears using a scale
from 1 to 9 where 1 = no symptoms, 3 =1 ~ to10%,
5=11to ~25%,7 =26 to ~50%, 9 = 51 to ~100%. The
percent disease index (PDI) for ear rot was calculated.

Twenty primer pairs from the maize genome (http://
www.maizegdb.org/) were designed for genetic diver-
sity analysis. Genomic DNA was extracted using the
PlantGen DNA Kit (Qiagen, Beijing, P.R. China) and
quantified using the NanoDrop™ 2000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, USA).

Each template was amplified using a 20-pl reaction
volume that contained 0.1 ng of DNA, 2 mM MgCl,,
200 uM of each ANTP, 200 nM of each primer, and
0.25 U Taq DNA polymerase (Invitrogen, Carlsbad,
USA). The PCR was conducted as an initial dena-
turation at 95°C for 3 min, 40 cycles of 94°C for 30 s,
45°Cfor 30s,72°C 30 s, and final elongation at 72°C
for 10 min. PCR products were loaded on a 6.5% v/v
acrylamide gel with DNA Marker I, including 600,
500, 400, 300, 200 and100bp (Qiagen, Beijing, P.R.
China). The resolution of the amplicons of their
method is about 80 bp. Electrophoresis results were
visualised by silver staining (CUTTSs et al. 2010). Gel
images were scored visually and coded as “1” for
presence of a band “0” for absence of a band or “9” for
missing a band for each variety and for each marker.

UPGMA cluster analysis was performed by us-
ing NTSYSpc (Ver. 2.11V, 2014). AMOVA analysis
was conducted using GenAlEx statistical software
(Ver. 6.502, 2012). Nei’s genetic distance was calcu-
lated by means of PopGen32 software (Ver. 1.31,1999).

RESULTS

Identification of isolates causing ears rot in
maize. The PCR products of representative fungal
isolates 24], S7c, S15a, and S35e were sequenced di-
rectly and deposited in GenBank (accession numbers
MF028813, MF445094, MF445099, and MF445097,
respectively). MegaBLAST analysis revealed that they
were 99% similar to F verticillioides isolate DET-51
(KX385102.1), E equiseti isolate YT2 (KX576659.1),
F proliferatum isolate 223_1_Cym (KX279453.1), and
F subglutinans strain S3.2 (MF045065.1), respectively.

A total of 454 fungal strains were isolated from
diseased maize ears, of which 158 isolates (34.8%)
were Fusarium subglutinans, 142 isolates (31.3%) ,
were F. proliferatum, 91 isolates (20%), were F. ver-
ticillioides, 44 isolates (9.7%), were F. graminearum,
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Table 1. Results of isolation of pathogens causing Fusarium
ear rot in maize in Harbin, China

Isolation rate

No. Fusarium sp. No. of isolates %)
1 E verticillioides 91 20
2 E subglutinans 158 34.8
3 E proliferatum 142 31.3
4 E equiseti 19 4.2
5 E graminearum 44 9.7

and 19 isolates (4.2%) E equiseti (Table 1). Among
them, a species complex of E verticillioides, F. sub-
glutinans, and F. proliferatum species formed the
primary pathogenic agent causing ear rot in maize.

Resistance determination. Among 59 maize hy-
brids, there were significant differences in the level of
resistance to ear rot and no hybrids were found to be
immune (Table 2). Eleven commercial hybrids were
found to be highly resistant, including Longdan25,
Hongyu415, and Fuerl. Five commercial hybrids were

Table 2. Evaluation of disease resistance of 59 commercial maize hybrids to Fusarium ear rot under conditions of natural

infection in Harbin, China

SSR PDI SSR PDI
Variety Type Variety Type

group 2015 2016 average group 2015 2016 average

I Zao50 17.2 20.8 19.0 R IV~ Liangyu2l 46.4 57.4 51.9 HS
Zhongnong225 19.8 22.2 21.0 R Jiulong17 31.3 33.5 32.4 S
Zhongyu990 16.6 21.4 19.0 R Badan5 17.6 28.2 22.9 R
Yuchengl 18.4 29.2 23.8 R Hetianl 27.6 42.8 35.2 S

I Zhedan37 25.4 39.4 32.4 S Jiudan57 20.4 21.6 21.0 R
Weiyul 17.3 18.9 18.1 R Suiyu23 0.8 1.6 1.2 HR
Xinmudan9 4.5 6.9 5.7 HR Longdan44 11.5 14.9 13.2 R
Suiyul0 48.9 71.5 60.2 HS Longyu828 49.2 59.4 54.3 HS
Suiyul9 27.9 33.1 30.5 S Longdan69 16.4 22.6 19.5 R
Longdan39 13.2 18.0 15.6 R Jiulong9 26.8 39.8 33.3 S
Xianyu696 17.8 20.2 19.0 R Fengken008 21.5 26.1 23.8 R
Keyul6 38.4 50.0 44.2 S Jiudan4s8 6.1 9.1 7.6 HR

11 Zhongdan18 17.8 26.0 21.9 R Fengtian27 7.3 9.1 8.2 HR
Jiyu66 16.7 19.5 18.1 R Anzaol0 5.1 6.9 6.0 HR
Jixiangl 14.7 17.7 16.2 R Fengdan5 31.2 35.5 33.3 S
Longdan25 6.4 12.6 9.5 HR Fangyu3 20.4 25.3 22.9 R
HE35 15.8 22.2 19.0 R \% Nxblym 14.3 18.1 16.2 R
Weiyu2 24.8 28.6 26.7 R Jinghua8 19.2 22.8 21.0 R
Tiannong9 17.6 26.2 21.9 R Hongyu415 5.4 9.8 7.6 HR
Jiulong19 9.2 11.8 10.5 R Hetian8 26.4 36.4 31.4 S

v Xianyu335 81.3 90.2 85.7 HS Hetian4 16.7 20.1 18.4 R
Chengdan22 16.7 19.5 18.1 R Hongchen968  12.4 16.2 14.3 R
Longfuyu? 6.7 10.5 8.6 HR Jiulong3 17.4 18.8 18.1 R
Demeiya3 17.6 28.2 22.9 R VI Xiuyu518 11.5 15.0 13.3 R
Hetian2 6.4 10.2 8.3 HR Xinyul5 12.2 14.5 13.3 R
Chunyu20 17.9 25.9 21.9 R VII  Suiyu29 23.8 29.5 26.7 R
HEF257 16.4 23.6 20.0 R Cunnuo 49.2 56.0 52.6 HS
Fuerl 5.9 9.3 7.6 HR VIII  Shengruil6 35.1 39.2 37.1 S
Xianfeng38905 7.2 11.8 9.5 HR Ping'an169 17.6 20.5 19.0 R
Longfuyu9 16.3 26.5 21.4 R

PDI - percent disease index; HR: PDI < 10% for highly resistant hybrids; R: 10% < PDI < 30% for resistant hybrids; S: 30% <
PDI < 50% for susceptible hybrids; HS: 50% < PDI for highly susceptible hybrids
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Table 3. Primers used in SSR analysis of 59 commercial maize hybrids

No. SSR primer Loci Primer sequence 5'-3' Repeat motif Allelic No.  Allele size (bp)*

F:CACCCGATGCAACTTGCGTAGA
1 gstl 8.08 RTCGTCACGTTCCACGACATCAC AGGAG 4 181, 175, 164, 155

5 umel149 3.06 F:-TACAGTAGGGATTCTTGCAGCCTC (AG)10 6

198, 179, 164, 157,

R:GTGGGACCTTGTTGCTTCCTTT 150, 133
3 umclos 507 o CGTCCAGCTCGATGATTTC | ATCG 2 187,177
$ a9l 406 R TTGCCTCCCAA (G s I
5 gd 506 [ osAGAACOE A aCeACT AACGC 4 265, 257, 236, 209
6  bnlglls2 806 LCOGCTACCGATTGTITGAATTG AG(18) 3 191, 183, 170

R:AAAGTCGTCCGGTCAAATTG

*Markers with only one scored allele were dominant loci (presence/absence)

identified as highly susceptible, including Suiyul0  bands, ranging from 133 to 388 bp in size (Table 3).
and Longyu828 (Table 2). Genetic similarity coefficients among the 59 maize

Determining the genetic diversity of maize hy- hybrids ranged from 0.58 to 0.96, with a mean of
brids. Among the 20 pairs of SSR primers tested, 0.77. When the genetic similarity coefficient was set
six pairs produced 24 reproducible polymorphic to 0.69, UPGMA (Unweighted pair group method)
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Figure 1. UPGMA tree of 59 commercial maize varieties grown in Heilongjiang province, China based on polymorphic
SSR markers
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Table 4. Hierarchical partitioning of variance among and within population groups from genetic diversity of commercial

maize hybrids based on analysis of molecular variance (AMOVA)

Source of variation DF SS Variance component Total (%) Fgr P-value
Disease resistance®

Among groups 3 11.95 0.011 0.294 0.003 0.418
Within groups 55 211.65 3.848 99.706

Genetic group”

Among groups 7 86.87 1.545 36.566 0.366 0.001
Within groups 51 136.73 2.681 63.434

*Percent disease index of ears rot in maize indicates four groups: highly resistant hybrids, resistant hybrids, susceptible hybrids,

highly susceptible hybrids; Peight SSR groups separated using UPGMA cluster analysis; DF — degree freedom; SS — sum of

squares; Fg;. — forced swimming test

cluster analysis placed the hybrids into eight SSR
groups (Figure 1).

AMOVA (analysis of molecular variance) indicated
that over 99% of the genetic variation in disease re-
sistance was distributed within populations (Table 4).
No correlation (P = 0.418) was found between genetic
diversity and disease resistance. Based on Wright’s
theory, the genetic difference associated with dis-
ease resistance (Fy; = 0.003) was considered to be
low (HARTL & CLARK 1997). Pairwise comparison
between types of resistance indicated significant dif-
ferences among all the four types (P < 0.05 and 0.01)
with FST values ranging from 0.04 to 0.08 (Table 5).

DISCUSSION

Ear rot caused by Fusarium spp. affects maize pro-
duction and kernel quality in many countries. The
dominant species causing ear rot in maize differ widely
in different geographic regions, such as F verticil-
lioides and F. graminearum in Nepal (DESJARDINS &
ProcCTOR 2011), E verticillioides or F. subglutinans

Table 5. Pairwise fixation index between different types of
resistance calculated from the SSR data set

Type® HR R S HS
HR (11) - - - -
R (34) 0.04* - - -
S9) 0.07* 0.05** - -
HS (5) 0.07** 0.06** 0.08** -

*The number of hybrids in each group is indicated in pa-
rentheses; HR —highly resistant hybrids; R — resistant hybrids;
S — susceptible hybrids; HS — highly susceptible hybrids;
***values significantly differ at P < 0.05 and P < 0.01

in Mexico (MADANIA et al. 2013), and E verticil-
lioides, F. proliferatum, and F. meridionale in the
Chongqing areas (ZHoU et al. 2018). We found in
this study that the dominant fungi causing ear rot
in maize in Harbin, China were the species complex
F subglutinans, F. proliferatum, and E. verticillioides.

Cultivation of resistant varieties is the most cost
effective and practical means of reducing the dam-
age from ear rot (CHEN et al. 2012). There are some
reports about disease resistance to ear rot in some
maize cultivars, such as CO272, CO325, and Pride
K127 (REID et al. 1993), and Monafound (PASCALE
et al. 2002). The above-mentioned evaluations of
resistance to maize ear rot were based on inocu-
lation with a single pathogenic fungus. However,
complexes of multiple Fusarium species were the
dominant fungi causing ear rot in commercial hybrids
under conditions of natural infection (DORN et al.
2009) and our results confirmed this. Therefore, it
is insufficient to screen resistance of commercial
maize varieties to ear rot using artificial inoculation
with single strains of pathogenic fungus (ZHANG et
al. 2012; DUAN et al. 2016). Rather, natural infec-
tion as a screening method for disease resistance is
likely to be more representative and have practical
significance for selecting resistant material in other
maize growing areas.

Using SSR analysis in this study, 59 maize hybrids
could be placed into eight SSR groups. This observa-
tion was similar to NIKHOU et al. (2013) and XU et al.
(2013) indicating that SSRs are efficient markers to
classify closely-related maize lines. In other words,
SSR markers were able to detect the extent and con-
siderable level of genetic diversity in maize hybrids.

This study provides the basis for an economical
and effective way to screen for resistance and aid in
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the genetic control of maize ear rot. The results will
have great practical significance and reference value
for global maize production and research
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