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Abstract: Soil salinity is one of the main factors limiting cereal productivity in worldwide agriculture. Exploitation
of natural variation in local barley germplasm is an effective approach to overcome yield losses. Three gene pools
of North African Hordeum vulgare L. grown in Tunisia, Algeria and Egypt were evaluated at the reproductive stage
under control and saline conditions. Assessment of stress tolerance was monitored using morphological, yield-rela-
ted traits and phenological parameters of reproductive organs showing significant genetic variation. High heritability
and positive relationships were found suggesting that some traits associated with salt tolerance could be used as
selection criteria. The phenotypic correlations revealed that vegetative traits including shoot biomass, tiller number
and leaf number along with yield-related traits such as spike number, one spike dry weight, grain number/plant and
grain number/spike were highly positively correlated with grain yield under saline conditions. Hence, these traits
can be used as reliable selection criteria to improve barley grain yield. Keeping a higher shoot biomass and longer
heading and maturity periods as well as privileged filling ability might contribute to higher grain production in barley
and thus could be potential target traits in barley crop breeding toward improvement of salinity tolerance. Multiple
selection indices revealed that salt tolerance trait index provided a better discrimination of barley landraces allowing
selection of highly salt-tolerant and highly productive genotypes under severe salinity level. Effective evaluation of
salt tolerance requires an integration of selection indices to successfully identify and characterize salt tolerant lines
required for valuable exploitation in the management of salt-affected areas.

Keywords: grain yield; Hordeum vulgare; morphological traits; phenological parameters; salt tolerance; selection
indices

Salinity is gaining major importance worldwide due
to climate changes and inappropriate management
of irrigation practices. This abiotic limitation was
extremely intensified with water deficit in arid and
semi-arid areas over the world and especially within
North Africa and Mediterranean Basin. Exploring
the natural diversity of major economically cereal
crops in these regions to select autochthonous salt-

tolerant genotypes was considered as a promising
strategy for crop improvement (SHAHBAZ & ASHRAF
2013). Although barley (Hordeum vulgare L.) is mod-
erately salt-tolerant, a wide genetic variation has
been reported (MUNNSs et al. 2006) and is highly
required to survey barley germplasm. Investigating
the response of several accessions in salt-affected
environment will help to enhance the comprehension
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of key mechanisms for stress tolerance. Improving
salinity tolerance involves a screening-based method
to better exploit appropriate stress tolerance traits
(EL-HENDAWY et al. 2009). Several selection indices
have been suggested on the basis of a mathematical
relationship between control and stress conditions.
Despite of current efforts intended for assessing tol-
erance criteria based on tolerance indices in cereal
crops during germination and seedling stage (ASKARI
et al. 2016), little has been reported at maturity
(SARDOUIE-NASAB ef al. 2014). Furthermore, this
tolerance undoubtedly appears to be stage-dependent
(AKRAM et al. 2002) and must be evaluated at the
yielding phase.

Salinity stress might affect spikelet initiation that
can seriously influence quality and grain yield through
modeling heading date. In recent years, heading in
small grain cereals is an important stage that has
been extensively studied and considered as highly
related to environmental adaptation (IBRAHIM et al.
2016; ALQUDAH & SCHNURBUSCH 2017). For these
reasons, ongoing breeding programs target different
tolerance traits at phenological, morphological and
agronomic levels.

This is the first report integrating heritability, re-
lationship linking vegetative and yield-related traits
as well as phenological characters, within multiple
tolerance indices and investigating the patterns of
genetic diversity in order to conserve and exploit
efficiently North African barley germplasm. Since
the study covered mainly landraces adapted to harsh
environment (ALLEL et al. 2016), the challenge is
of substantial concern in efforts to determine key
morphological and agronomic traits associated with
salt tolerance.

MATERIAL AND METHODS

Plant material, experimental design and salt
treatment. In order to determine high yielding-related
traits of North African barley, a total of 31 barley
accessions and varieties collected from Tunisia (11),
Algeria (9) and Egypt (11) were evaluated. A pot
experiment was conducted from December to June
at the Centre of Biotechnology in Borj Cedria (30
km, south of Tunis) under open experimental station
equipped with a shelter to avoid rainfall interference.
Pots were arranged in completely randomized design
with two factors (salinity level and accessions) and
nine replications, which gives a total of 837 pots
(31 accessions x 3 treatments x 9 replicates). The
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seedlings were grown in 5l-pots filled with sandy
loam soil and irrigated on a regular basis twice a week
with half-strength Hoagland’s nutritive solution. At
4-leaf developmental stage, salt treatment was initi-
ated gradually until the final NaCl concentration
was reached; 100 or 200 mM NaCl for moderate and
high salinity levels respectively, while the control
plants were irrigated with distilled water. The plants
were harvested at maturity 15 weeks after starting
salt treatment.

Data collection and estimation of salt tolerance
indices. The accessions were assessed by means of
phenological and morphological characterization at
reproductive stage in all barley genotypes. Morpho-
logical data were recorded for 28 traits listed with
their abbreviations in Table 1 including growth and
reproductive characters. Plant reproductive phenol-
ogy was monitored by determining the days to head-
ing (HEA) and days to maturity (MAT). HEA were
calculated as the number of days between the sowing
date and the date when 50% of all the shoots in a
plot had fully emerged spikes. MAT were calculated
from sowing date to 50% senescence of the spikes.

Salinity susceptibility and tolerance indices were
calculated based on grain yield production as follows:

Stress Tolerance Index (STI):

STI = YP x YS/(YAP)? (FERNANDEZ 1992)
Stress Susceptibility Index (SSI):

SSI =1 - YS/YP/SI (FISCHER & MAURER 1978)
Tolerance Index (TOL):

TOL = YP - YS (ROSIELLE & HAMBLIN 1981)
Mean Productivity (MP):

MP = YP + YS/2 (ROSIELLE & HAMBLIN 1981)
Geometric Mean Productivity (GMP):

GMP = (YS x YP)” (FERNANDEZ 1992)
Harmonic Means (HARM):

HARM = 2(YP — YS)/YP + YS (BAHERI et al. 2003)
Salt Tolerance Trait (STTI):

STTI = (YS/YP) x 100% (CHEN et al. 2007)

Stress Intensity (SI):

SI = [1 - (YAS/YAP)]
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where:

YP - seedyield from non-stressed pot of a given geno-
type

YS - seed yield from stressed pot of that genotype

YAS - average seed yield of all genotypes from stressed
pots

YAP — average seed yield of all genotypes from non-
stress pots.

Statistical analysis. Analysis of the effects of geno-
type, treatment and treatment x genotype interactions

Table 1. Studied traits in barley genotypes including pheno-
logical, growth, grain yield traits and morphological traits
ratio (total of 28 traits)

Trait Abbreviation
Phenological traits

1 days to heading HEA

2 days to maturity MAT
Growth traits

3 whole dry weight/plant WDW
4 shoot dry weight/plant ShDW
5 root dry weight/plant RDW
6 plant height PH

7 tiller No./plant TN

8 leaf No./plant LN
Grain yield traits

9 grain yield/plant GY

10 spike dry weight/plant SDW
11 spike dry weight 1SDW
12 spike No./plant SN

13 grain No./plant GN/P
14 spikelet No./spike StN

15 grain No./spike GN/S
16 awn length AL

17 rachis length RL

18 spike length SL

19 1000-kernel weight TKW
Morphological traits ratio

20 shoot/root dry weight Sh/R
21 root/shoot dry weight R/Sh
22 leaf/tiller No. LN/TN
23 spike/tiller No. SN/TN
24 spike/shoot dry weight S/Sh
25 grain yield/shoot dry weight GY/Sh
26 grain yield/whole plant dry weight GY/W
27 grain yield/shoot and root dry weight ~ GY/Sh+R
28 harvest index HI

on measured traits was performed using Proc GLM
in SPSS (Ver. 16, 2007). Duncan’s multiple range
tests were applied for all phenotypic mean value at
a significant level of 0.05.

The mean data of each trait for a given genotype and
salt treatment level were used to calculate genotypic
co-variance (02), environmental co-variance (6?) and
broad-sense heritability (Hﬁ). HE was calculated for
each trait as

H} = 0';/(0; +0?)

Phenotypic correlations between growth and agro-
nomic traits as well as phenological characters were
estimated by computing the Person’s correlation
coefficient (r) using the SPSS Correlate procedure.

RESULTS AND DISCUSSION

Variance analysis. The North African barley germ-
plasm was recently shown to provide a great potential
for crop improvement (ALLEL et al. 2017). Systematic
approaches to increase the level of stress tolerance
require the evaluation of the existing genetic vari-
ability in barley gene pool. ANOVA showed highly
significant difference between the genotypes, the
treatment and their interaction in terms of agro-
morphological and phenological characters that
can explain the phenotypic trait variation (Table 2).
Similar results were reported in bread wheat under
imposed water deficit (HABIBPOUR et al. 2012).

Generally, the greatest effect was observed for
treatment (Table 2) as found in wheat (BORRELLI et
al. 2011). Regarding phenological traits, the geno-
type marked the major effect when compared to the
treatment (Table 2).

Assessment of trait heritability. In this study,
among all attributes, very high values of heritability
(80-95%) were shown with HEA, MAT followed by
GN/S, GY/ShDW, HI over the salt and the control
treatments as well as AL, RL, SL under control con-
dition (Table 3). Moderately high heritability was
detected for WDW, PH, SN/S, Sh/R, R/Sh, GY/W,
GY/Sh+R under saline and non saline condition;
length of different part of the spike traits under
saline condition as well as SDW and S/Sh under
control condition. Heritability for the other traits
were moderate like GY except for some traits that
show low heritability (< 40%) including TN, SN,
TKW, SN/TN under saline and non-saline condition
as well as LN under 200 mM NaCl. According to
AHMADI et al. (2016), high estimates of heritability
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were shown only for the GN/S (96%), TKW (75%),
peduncle length (68%) and HEA (72%), while low
heritability as shown for GY (24%).

In this study, high estimates of heritability were
shown for several yield components, while GY had
moderate heritability suggesting that the treatment
effect constitutes a major portion of the total pheno-
type variation in this character. Thus, the selection of
superior genotypes based on this character would not
be effective. For a more efficient approach towards
improvement of GY, selection should be made on its
components. Moderate to low values of heritability
for GY in barely and other crops have been reported
previously (CHAND et al. 2008; AHMADI et al. 2016).

Additionally to the high heritability found here
for several determined traits, data showed that the
ratio between the coefficients of genetic and envi-
ronmental variation was often above one for many
characters over all treatments (Table 3). Both of those
results suggest a high genetic control of the expres-
sion of these traits. Thus the selection can safely be
performed on the basis of phenotypic expression
of those characteristics in the individual plant by
adopting simple selection methods.

Values of heritability were higher under control
condition than under high salinity for the majority of
traits (60% of the total studied traits); this finding is
due to a higher genetic variance for these traits under
control conditions and to a higher environmental
variance for the remaining traits under salt treatment.
In contrast, PH, GY/Sh, GY/W, HI showed higher
heritability under high salt treatment compared to
control condition.

Means and range of salt tolerance indices of agro-
morphological traits. Based on agro-morphological
evaluation, barley genotypes react differently to the
salt treatment (Table S1 in Electronic Supplementary
Material (ESM)). Mainly, results showed reduction
of almost all vegetative traits (including ShDW and
TN) as well as GY and its components (including SN,
GN/P, GN/S and TKW) with increasing salinity level
as compared to control plants. The salt-induced de-
cline in growth and GY has been reported previously
inrice (MAHMOOD et al. 2009), wheat (BORRELLI et
al. 2011) and barley (AHMED et al. 2013).

The range and mean values of salt tolerance indi-
ces for all the studied characters also indicated wide
ranges of variation which revealed possible amount
of variability among the genotypes (Table S1 in ESM).
For instance, high range of variability was observed at
100 mM NaCl for SDW followed by RDW. In addition,
wide range of variability was shown at 200 mM NaCl
for StN and GN/S and GY. Similarly, considerable

variation of salt tolerance indices for agro- morphologi-
cal traits was detected in rice under saline condition
(SENGUTTUVEL et al. 2016).

Salt-induced changes in pheno-phases duration.
Phenological data for HEA and MAT revealed a
notable difference between cultivars at control and
200 mM NaCl treatments (Table 4). The variabil-
ity in maturation made it possible to identify early
landraces as Earlyl (135 days) and late landraces
like Tichedrett and Temassine (181 days) at control
condition. Salt-induced changes in pheno-phases
duration have been reported in cereal crops (HaAMAM
& NEGRIM 2014) and could have a huge impact on
crop yield (Got et al. 2017).

Salinity which tends to shorten the grain filling
period and accelerates maturation will significantly
reduce the final grain weight (MAAs & GRIEVE 1990).
Interestingly we found that at severe salinity (200 mM
NaCl), HEA and MAT exhibited an increase in the
majority of moderately and salt tolerant genotypes
(based on STTI of GY; STTI = 50%) suggesting that
in these cultivars a longer HEA and MAT periods
may contribute to salt tolerance. Thus, we deduce
that delayed heading and maturity processes gives
the opportunity of late differentiation and ripening,
allowing the plant to maintain higher number of
kernels/spike and consequently high GY.

Relationships between growth, yield and its
related components and phenological parameters.
Since the present study aims to provide clues to iden-
tify the most desirable performance criteria as alter-
natives for breeders to increase yield, relationships
between agro-morphological (Table S2 in ESM) and
phenological traits (Table S3 in ESM) were monitored
in barley. GY is often proposed as the primary trait
for this selection designed for achieving adaptation
to stress-prone environments (ARAUS et al. 2008).
Interestingly we found that ShDW, WDW, LN, TN
were strongly and significantly correlated with GY.
Thus, we recommend these vegetative components
as suitable parameters to assess for high GY and
salt tolerance as they permit direct estimation of
economic return under saline conditions. Similarly,
some studies proposed TN and ShDW as valuable
criteria to evaluate salt tolerance (AHMED et al. 2013;
SBEI et al. 2014). It was reported that in cereals salt
can inhibit tiller and leaf formation during their
emergence as well as it may even accelerates leaf
senescence and abortion of tiller which results in
reducing green biomass and GY (GRIEVE et al. 2001).

Furthermore, our results indicated that under
saline condition the decline of GY was positively
correlated with ShDW decline. A decrease in photo-
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synthetic rate during vegetative (ALLEL et al. 2018)
and reproductive phase (HIRASAWA et al. 2017) as
well as leaf injury caused by the salt toxicity could
explain a reduction in biomass that affects later GY
production.

In order to give a clear estimation of GY production
versus total biomass or above-ground biomass, HI
and GY/vegetative traits ratio were determined. Data
showed that these agronomic traits were positively
associated with GY under salinity indicating that
plants able to maintain HI under stress conditions
will often have a higher yield.

Here, our results revealed that growth vigor is
one of the major determinants for high yield perfor-
mance in barley. Accordingly, KUMAR et al. (2013)
and REDDY et al. (2017) suggested that plant vigor
helps to avoid the toxic effects of salinity rather than
stands as a tolerance mechanism which works as far
as the productivity is concerned.

In the present study, we found that yield components
including SN, 1SDW, GN/P, GN/S, Grain Number/
Rank (GN/R) and TKW were positively correlated
with GY under saline condition. Thus we assumed
that these characters are best predictors of yield un-
der high stress conditions. This finding is supported
by authors (J1 et al. 2012; AKBARPOUR et al. 2015)
who noted similar behavior in wheat exposed to salt
stress and in rice subjected to drought condition,
respectively. In addition, we noticed that correla-
tion coefficient of the grain filling parameters cited
above and TKW increased with increasing salinity
level (Table S2 in ESM) suggesting a main role of the
grain filling process in efficient GY under salt stress
as well as a photosynthetic activity contribution could
be anticipated. Data obtained on phenological and
agro-morphological relations showed that GY and dry
weight production of growth parts were significantly
and positively correlated with HEA and MAT under
saline and non-saline conditions (Table S3 in ESM).

In summary, the high yield is primarily associated
with increased biomass and shoot growth which sub-
sequentially allows better salinity tolerance in barley.

Estimation of tolerance indices. According to
our data, GY was significantly reduced with increas-
ing salinity except for some specific salt tolerant
genotypes (Table S4 in ESM). The Gizal25, Gizal26,
Temassine and Kebilli2 genotypes yielded the greatest
dry weights at moderate salinity while, the lowest
value was observed in the Earlyl and Tombari geno-
types. Many interesting genotypes were identified
at high salinity, Tozeur2, Tichedrett, Kerkena and
Kebilli2 were among the most productive, while El
Arich, Tombari and Earlyl genotypes were the less

productive. For better evaluation of barley landraces
for salt tolerance, seven selection indices including
STI, MP, GMP, TOL, SSI, HARM and STTI were
used (Table S4 in ESM).

In the present study, the maximum values of STI,
MP and GMP were observed in Kebilli2, Temassine

Table 4. Effect of salinity on pheno-phases duration in
barley phenological characters including number of days
to heading (HEA) and number of days to maturity (MAT)
were determined in barley under control and saline con-
ditions (200 mM NaCl) (in days)

Control 200 mM NaCl
Genotypes HEA MAT HEA MAT
Kebilli 2 131 1710 139¢ 178¢
Tozeur 2 1321 1728 1394 178¢
Rihane 1174 155° 1174 155°
Manel 131 168~ 131f 168
Jerba 123™ 165™ 121° 162"
Sidi Bouzid 1374 1728 147° 182¢
Kairouan 138¢ 1784 135¢ 174¢
Gabes 139° 1784 1308 169"
Tozeur 1 129% 169 121° 160P
Tombari 136° 171t 131! 166*
Kerkna 136° 176¢ 127 166*
Sidi Mehdi 139" 179¢ 148° 1872
Ras El Mouch 121" 161" 1482 1872
Ksar Megarine 135¢ 173f 1394 177¢
Saida 139° 176° 129" 166~
Azrir 108" 146" 108" 146
Rihane 03 133" 173f 135¢ 174f
Tichedrette 1412 180° 128! 167
Nailia 119° 1581 1199 158"
Temassine 1417 1817 126~ 165'
Early 1 100° 135" 100° 135"
Early 2 1151 153t 123™ 161°
Giza 123 117° 157" 1227 160P
Giza 125 117° 155s 121° 1499
Giza 126 127! 169 1308 1718
Giza 127 119° 1599 124! 163™
Giza 129 132! 1728 146° 185°
Giza 130 134# 170! 146°¢ 182¢
Giza 131 127! 167' 127 166*
Giza 2000 119° 160° 121° 161°
El Arich 121" 1599 121° 1599

Letters indicate significant differences at P < 0.05 according
to Fisher’s test
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and Gizal26 genotypes at 100 mM NaCl, Keblli2
and Tozeur2 at 200 mM NaCl indicating that these
genotypes had high capacity of GY production at
both stress and non stress conditions simultane-
ously. STI, MP and GMP take into consideration GY
production of the genotype under both of control
and salt condition allowing to identify the genotypes
that perform well under both of these treatments.
However, these cited indices may let to ineffective
selection since GY might fluctuate whether plants
were exposed to saline or non saline condition. For
instance, the genotype Kairouan showing higher
value of STI, MP and GMP appeared moderately
salt tolerant genotype with an STTI value of 50.6%
and not the most salt tolerant.

In the other hand, SSI, TOL, HARM and STTI
indices take into consideration only the capacity
of the genotype to sustain yield under salt stress
compared to control condition and allowed to truly
select the most salt tolerant genotypes.

Our results showed that the lowest values of SSI,
TOL and HARM indicating the most salt tolerant
genotypes were recorded for Gizal25 and Gizal30
at 100 mM and Saida, Tichedrett, Earlyl, Azrir and
Gizal25 at high salinity level. Considering the STTI
indices, the highest values indicated the most salt
tolerant genotypes which were the same identified by
SSI, TOL and HARM. Such finding suggests that these
genotypes possess sufficient plasticity to respond
to soil salinity constraint as well as an implication
of significant salt tolerance mechanisms. Similar
results were found by SENGUTTUVEL et al. (2016).

If selection strategies deal with factors of stress
adaptation in addition to yield under stress, then it
may be possible to combine higher yield potential
and salt resistance (BLum 2005).-Interestingly, us-
ing multiple tolerance indices, we have provided
evidence for both high grain yield production and
substantial tolerance at severe salinity in a quite
number of genotypes like Tichedrett. In fact, from
an evolutionary perspective throughout domestica-
tion and breeder selection over time, salt-responsive
genes have made a contribution to the development
of salt barley cultivars, especially in harsh environ-
ments (ALLEL et al. 2016, 2017).

The salt tolerance indices studied here provided
different classifications and arranged the genotypes
based on particular performance as illustrated in Fig-
ure S1 (in ESM) showing that STI, TOL, HARM and
STTI appeared the most efficient selection indices
with a clear variability based on GY, while SSI, MP
and GMP failed to differentiate between genotypes.
Several studies proposed the use of STTI in screening
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program for salt tolerance rather than other indices
(AL et al. 2007; SHAHZAD et al. 2012).
Approaches for sustaining high yields of barley
under salinity are important agricultural goals. Vari-
ous salt tolerance indices were shown to be useful for
estimation of stress level and identification of salt
tolerant elite genotypes. Such potential lines could
serve for effective exploitation in breeding purposes
or as source for salt-responsive candidate genes
suitable for crop improvement in salt-affected soils.
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