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Abstract

Patzak J., Henychová A. (2018): Evaluation of genetic variability within actual hop (Humulus lupulus L.) cultivars by an 
enlarged set of molecular markers. Czech J. Genet. Plant Breed., 54: 86−91.

Traditional hop (Humulus lupulus L.) cultivars have been used in the brewing industry for a long time. Globally, 
about ten new breeding lines were released to the market in each decade from ~1970 to 1999. Since 2006, the rate 
of release of new cultivars has increased tenfold. It is, therefore, important to identify their genotype and origin. 
Molecular genetic methods based on DNA are the most appropriate technology for this purpose. Recently, we 
developed an efficient marker system for the authenticity control of hop genotypes based on expressed sequence 
tag-simple sequence repeats (EST-SSR). In the present study, we enlarged the previously established EST-SSR 
set with 27 new polymorphic markers and evaluated molecular genetic variability within 135 traditional and 
new world hop cultivars. Two sets of 10 markers effectively differentiated all used cultivars, with the exception 
of cultivars derived from the same original genotype such as Saaz, Spalt, Tettnang and Nadwislawsky. Results 
of molecular genetic variability analyses corresponded with the genealogical and geographical origin of the key 
cultivars.
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Current increased demand for the production of 
hops (Humulus lupulus L.), a key raw material for 
brewing industry, has been driven predominantly 
by development of craft breweries. With marketing 
often based on new flavours, there is a clear demand 
from the beer market for new hop cultivars, and 
therefore hop breeders have provided an expanded 
list of cultivars every year in all hop growing regions. 
The Barth-Haas Group (2013) produced a record of 
125 hop cultivars in common use worldwide which 
was an increase of 17 cultivars since 2009. Thirty 
new hop cultivars were introduced in 2016 alone 
(Tim Kostelecky, John I. Haas, Yakima, personal 
communication). With this large number of new 
cultivars, it is not always easy to understand how 
new cultivars relate to existing established hop cul-
tivars, especially when the origin of new cultivars is 
sometimes secret or poorly described. Every cultivar 

can be precisely described by its content of bitter 
acids, essential oils and polyphenols in hop cones, 
but there are overlaps among cultivars. The com-
position is influenced by growing season, growing 
technology and environmental conditions (Krofta 
& Patzak 2011), and is not necessarily indicative 
of the character of that cultivar in beer. Nowadays, 
molecular genetic methods based on DNA provide a 
reliable tool for the evaluation of individual cultivars 
and genotypes. Microsatellite SSR (simple sequence 
repeat) markers have become a standard DNA iden-
tification method for species and cultivars within 
different organisms. A recent technical advance in 
next generation sequencers (NGS) opened a way 
to obtain huge amounts of transcriptomes (Nagel 
et al. 2008; Clark et al. 2013; Xu et al. 2013) and 
whole genome sequence information (Natsume et 
al. 2015), which provided us with the possibility to 
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seek new gene specific molecular markers. From 
this information, new types of molecular markers 
such as expressed sequence tag-simple sequence 
repeats (EST-SSR) ( Jakše et al. 2011; Patzak & 
Matoušek 2011; Koelling et al. 2012; Singh et al. 
2012) and single nucleotide polymorphisms (SNP) 
(Matthews et al. 2013; Yamauchi et al. 2014; 
Henning et al. 2015) were derived. Recently, we 
reported an efficient marker system for genotyp-
ing and authenticity control of Czech hop cultivars 
based on EST-SSR, which was implemented for the 
identification of hop genotypes and control of cul-

tivar purity (Patzak & Matoušek 2013a, b). This 
marker system is successful and efficient not only 
for cultivar determination, but also for evaluation 
of molecular genetic variability with addition of 
highly polymorphic molecular markers (Patzak et 
al. 2007; Patzak & Matoušek 2011). 

In the present study, we enlarged the set of EST-
SSR markers with 27 new polymorphic markers, 
and evaluated molecular genetic variability within 
135 traditional and new world hop cultivars (Ta-
ble S1 in Electronic Supplementary Material (ESM)) 
by hierarchical clustering analysis and principal 

Table 1. Gene region, amplification and polymorphism characteristics of 27 hop expressed sequence tag-simple se-
quence repeats (EST-SSR) loci

Accession No. Gene Region NA HO HE

GAAW01049621 abscisic acid intensive 5 intron 7 0.696 0.783

AB543053 aromatic prenyltransferase HlPT-1 CDS 2 0.704 0.491

GAAW01059666 auxin-repressed protein 3'UTR 9 0.615 0.639

JQ063073 branched-chain aminotransferase 1 (BCAT1) 3'UTR 9 0.585 0.651

GAAW01078174 bZIP transcription factor 25 CDS 5 0.652 0.517

FJ617541 cinnamate 4-hydroxylase CDS 4 0.430 0.439

AB290349 dihydroflavonol 4-reductase CDS 3 0.711 0.575

LA679232 endoglucanase 6 3'UTR 10 0.793 0.780

GAAW01061092 flavanone 3-hydroxylase 5'UTR 5 0.489 0.669

GAAW01082226 geraniol 10-hydroxylase CDS 4 0.548 0.641

LA438938 gibberellic acid 2 oxidase 2
promoter 7 0.563 0.736
promoter 8 0.652 0.822

LA407469 gibberellic acid intensive gene 1
promoter 3 0.452 0.437
promoter 4 0.674 0.603

AB292244 HlMYB1 transcription factor
promoter 2 0.489 0.494
promoter 8 0.844 0.829

AB292245 HlMYB2 transcription factor
CDS 2 0.430 0.472
CDS 4 0.526 0.564

GAAW01070905 MYB transcription factor 5
CDS 4 0.304 0.518

3'UTR 3 0.741 0.526

HG983335 MYB transcription factor (Myb8) CDS 4 0.674 0.644

LA458143 MYB transcription factor 46 3'UTR 4 0.474 0.465

GAAW01039204 MYB transcription factor 78 intron 5 0.430 0.517

GAAW01009048 rRNA 2'-O-methyltransferase fibrillarin CDS 2 0.393 0.317

GAAW01049743 small auxin up RNA (SAUR) protein 5'UTR 4 0.252 0.625

GAAW01063497 WRKY transcription factor 9 CDS 3 0.407 0.352
LA429216 WRKY transcription factor 20 5'UTR 4 0.430 0.472

CDS – coding sequence; UTR – untranslated region; NA – number of alleles; HO – observed heterozygosity; HE – expected 
heterozygosity

https://www.agriculturejournals.cz/uniqueFiles/236831.pdf
https://www.agriculturejournals.cz/uniqueFiles/236831.pdf
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coordinate analysis (PCoA) based on 276 amplified 
polymorphic markers. Six SSR (Jakše et al. 2002; 
Štajner et al. 2005), five STS (sequence-tagged 
sites) (Patzak et al. 2007) and previous ten EST-SSR 
(Patzak & Matoušek 2011) loci were amplified in 
PCR reactions (2 min at 94°C, 35 cycles (30 s at 94°C; 
60 s at 54°C, 90 s at 72°C); 10 min at 72°C). Using 
the CTAB method according to Patzak (2001) DNA 
was isolated from the young leaves of samples from 
the hop garden containing the world hop collection 
of Hop Research Institute Co. Ltd., Žatec and from 
dried cones or pellets from samples obtained from 
hop merchants (Yakima Chief – Hopunion, LLC., 
Belgium; Simon H. Steiner, Hopfen, GmbH, Germany; 
John Barth & Sohn GmbH, Germany; Charles Faram 
& Co. Ltd., United Kingdom; Comptoir agricole, 
France; Slovenian Institute of Hop Research and 
Brewing, Slovenia). Amplification products were 
resolved via 5% denaturing (8 M urea) polyacryla-
mide gel vertical electrophoresis and visualized by 
silver-staining (Patzak 2001). 

Within 27 newly together used EST-SSR markers, 
the number of alleles (NA) per locus ranged from 
two to ten (Table 1) and was similar to our previous 
results (Patzak & Matoušek 2011). Jakše et al. 
(2011) reported also very similar results, where NA 
ranged from two to seven and from four to twenty for 
multi-allelic loci, respectively. The observed (HO) and 
expected (HE) heterozygosities of new EST-SSR mark-
ers were calculated by GENEPOP version 4.2 (Ray-
mond & Rousset 1995) and ranged from 0.252 to 
0.848 and from 0.317 to 0.822, respectively. It was 
also similar to previous results ( Jakše et al. 2011; 
Patzak & Matoušek 2011). Analysis by the Minimal 
Marker computer program (Fujii et al. 2013) was 
used for evaluation of the strength and efficiency of 
new EST-SSR markers. Two sets of 10 markers ef-
fectively differentiated all used cultivars, except for 
cultivars derived from the same original genotypes 
such as Saaz, Spalt, Tettnang and Nadwislawsky. 
Markers of flavanone 3-hydroxylase (F3H), abscisic 
acid intensive 5 (ABI5), auxin-repressed protein 
(ARP1), MYB transcription factor 1 (HlMYB1), MYB 
transcription factor 2 (HlMYB2), MYB transcription 
factor 46 (MYB46) and gibberellic acid 20 oxidase 2 
(GA20oxy2) were included in these sets of new EST-
SSR markers (Table 1). Previous EST-SSR markers 
(Patzak & Matoušek 2011) from our authenticity 
control system (Patzak & Matoušek 2013a, b), 
WRKY transcription factor 1 (WRKY1), 2-C-methyl-
D-erythritol 2,4-cyclodiphosphate synthase (CMPS), 
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Figure 1. Dendrogram of genetic distances of 135 world 
hop cultivars revealed by unweighted pair group method 
with arithmetic means (UPGMA) and Neighbour-Joining 
(NJ) clustering based on the Jaccard similarity coefficient 
determined by 276 polymorphic molecular markers
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leucoanthocyanidin reductase 1 (LAR1) and calcium-
binding EF hand family protein (CaEFh) were also 
included. Sets were complemented by previous STS 
markers (Patzak et al. 2007) of chalcone synthase 1 
(CHS1), endochitinase 1 (HCH1) and nucleotide 
DNA-binding protein (NDBP) and by HlGA3 SSR 
marker (Jakše et al. 2002). F3H, GA20oxy2, HCH1, 
NDBP and HlGA3 were included in both sets. Hen-
ning et al. (2015) published similar results for SNP 
markers where seven markers differentiated 116 hop 
cultivars.

A hierarchical cluster analysis was used for evalu-
ation of molecular genetic variability within hop 

cultivars. It was based on the Jaccard similarity 
coefficient and Neighbour-Joining (NJ) clustering 
by unweighted pair group method with arithmetic 
means (UPGMA) in DARwin v. 5.0.155 (Dissimi-
larity Analysis and Representation for Windows, 
http://darwin.cirad.fr/darwin). The resulting den-
drogram (Figure 1) was visualised by Geneious Pro 
4.8.2 (Biomatters Ltd., Auckland, New Zealand) and 
corresponded with the combination of genealogical, 
geobotanical and analytical characteristics of indi-
vidual cultivars. Hop germplasm has been shown 
by different methods of molecular analysis to be 
broadly divided into European and North American 

Figure 2. Principal coordinate analysis of 135 hop cultivars with country of origin revealed by DARwin v. 5.0.155 (Dissi-
milarity Analysis and Representation for Windows, http://darwin.cirad.fr/darwin) based on 276 polymorphic molecular 
markers
x, y – the first and the second principal coordinate, respectively; colours and signs represent the country of cultivar origin
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material (Seefelder et al. 2000; Štajner et al. 2008; 
Howard et al. 2011; Henning et al. 2015). A lot of 
cultivars have been developed through progressive 
hybridisation of European landrace germplasm with 
germplasm with its origin in wild populations of 
North America (Bassil et al. 2008; Štajner et al. 
2008; Patzak et al. 2010; Howard et al. 2011). This 
was shown in cluster analysis when clusters I, II and 
III belong to European germplasm, VI, VII and VIII 
to North American germplasm and DNA information 
of cultivars in clusters IV and V showed patterns of 
variation from both North American and European 
origin (Figure 1). Genomes of aroma cultivars in 
cluster Ia were derived from continental European 
landrace genotypes which were used by US breeders 
in the development of these cultivars (Barth-Haas 
Group 2013; Lemmens 2014). Cultivars in cluster 
IIa originated from Fuggle and Golding, which were 
selected in the United Kingdom. Cultivars in cluster 
IIb originated from Northern Brewer (UK) which 
was also used for breeding of cultivars in cluster 
Ib and Ia. New French cultivars were grouped in 
cluster III. Very interesting was cluster IV where 
Boadicea (UK) and Sorachi Ace (Japan/USA) were 
grouped, which were both bred from male hops 
originated from Japan (Barth-Haas Group 2013). 
Cluster V grouped high alpha acid cultivars bred from 
Magnum and Taurus (Germany) which incorporate 
North American germplasm from Galena (USA) and 
Brewers Gold (UK) and European germplasm from 
Hallertau (Germany) (Lemmens 2014; Dresel et al. 
2016). New Slovenian cultivars Eureka (cluster Va), 
Dana and Styrian Wolf (cluster Vc) were also bred 
from Taurus or Magnum, respectively. In North 
American germplasm, there are two major clusters 
VII and VIII, and cluster VI with cultivars Simcoe 
and its daughter Mosaic (USA) (Barth-Haas Group 
2013; Dresel et al. 2016). New Zealand cultivars 
were grouped in cluster VIIa. They were mainly 
bred from Smooth Cone (New Zealand) which was 
bred from Late Cluster (USA) (Dresel et al. 2016). 
There are mainly aroma hops similarly like Slovenian 
cultivar Styrian Cardinal and Australian cultivar 
Helga, which were also included in this cluster. South 
African cultivars were grouped in cluster VIIb with 
cultivar Pride of Ringwood (Australia), which origi-
nated from Brewers Gold (UK) (Dresel et al. 2016). 
Brewers Gold influence also went through clusters 
VIIIa, VIIIb and VIIIc. Columbus (USA) breeding 
origin (cluster VIIIa) and Nugget (USA) breeding 
origin were also distinguishable (Figure 1). Cultivars 

made from Cascade (USA) were grouped in cluster 
VIIId (Dresel et al. 2016).

The principal coordinate analysis (PCoA) was also 
used for estimation of genetic diversity structure. 
PCoA was conducted by DARwin software based on 
a genetic similarity/dissimilarity matrix. The first 
principal coordinate (PCo) represented 12.65% of 
variation and the second PCo represented 6.85% 
of variation. PCoA corresponded with a previous 
dendrogram (Figure 1) when it divided cultivars into 
four quadrants: continental landrace origin, Fuggle 
and Northern Brewer origin, Brewers Gold origin 
and Late Cluster origin (Figure 2). There were also 
noticeable breeding influences of other key cultivars 
(Cascade, Magnum, Columbus) on new hop cultivars. 
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