Molecular Mapping of Leaf Rust Resistance Gene *LrL224* in Chinese Wheat Cultivar L224-3

Yue ZHOU^{1,2}, Huan LI¹, Pei-pei ZHANG¹, Lin WANG² and Zai-feng LI^{1*}

¹College of Plant Protection, Hebei Agricultural University, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Baoding, Hebei, P.R. China; ²Baoding University, Baoding, Hebei, P.R. China

*Corresponding author: lzf7551@aliyun.com

Abstract

Zhou Y., Li H., Zhang P.-P., Wang L., Li Z.-F. (2018): Molecular mapping of leaf rust resistance gene *LrL224* in Chinese wheat cultivar L224-3. Czech J. Genet. Plant Breed., 54: 65–70.

Leaf rust, caused by Puccinia triticina, is a major wheat disease worldwide. The chinese wheat cultivar L224-3 showed high resistance to most of P. triticina pathotypes in the seedling and adult stage. Identifying and mapping the leaf rust resistance gene(s) in L224-3 is very useful for breeding leaf rust resistant wheat cultivars. In the present study, the wheat cultivar L224-3 and thirty-six lines with known leaf rust resistance genes were inoculated with 15 pathotypes at the seedling stage for gene postulation. A total of 144 $F_{2:3}$ lines from the cross L224-3 × Zhengzhou 5389 were inoculated with the pathotype FHBQ for leaf rust genetic analysis at the seedling stage. A total of 1276 SSR (simple sequence repeat) markers and the STS (sequence tagged-site) marker ω -secali/Glu-B3 were used to test the parents, resistant and susceptible bulks. The polymorphic markers were used to genotype the $F_{2,3}$ populations. L224-3 was highly resistant to all Lr26 avirulent pathotypes, showing the presence of Lr26 in L224-3. The presence of Lr26 in L224-3 was also confirmed by the molecular marker ω -secalin/Glu-B3. Due to resistance to some Lr26 virulent pathotypes, L224-3 may carry another resistance gene. Based on the genetic analysis using the pathotype FHBQ with virulence to Lr26 the resistance of L224-3 was controlled by a single dominant gene, tentatively designated LrL224. Four SSR markers (barc8, gwm582, wmc419, and wmc694) and one STS marker (ω -secali/Glu-B3) on 1B were closely linked to LrL224. The two flanking SSR loci were barc8 and gwm582, with the genetic distances of 4.3 and 4.6 cM, respectively. LrL224 was located on 1BL, and it showed different seedling reactions with other genes on 1B. Therefore LrL224 is likely to be a new leaf rust resistance gene.

Keywords: genetic analysis; molecular marker; Puccinia triticina; wheat (Triticum aestivum L.)

Leaf rust, caused by *Puccinia triticina* (*Pt*), is a major wheat disease worldwide and can cause significant yield losses wherever wheat is grown in favourable conditions. With global warming, climatic conditions will become more favourable for the occurrence and spread of leaf rust. In China four significant leaf rust epidemics occurred in 1969, 1973, 1975, and 1979 (Dong 2001). In recent years leaf rust has become increasingly important in Northern China and the southern part of the Yellow and Huai Valleys with climate changing (Zhao *et al.* 2008). In 2012 significant yield losses were recorded in some regions of Gansu,

Sichuan, Shaanxi, Henan, and Anhui (ZHOU et al. 2013a). Using leaf rust resistant genes and breeding resistant cultivars are the most efficient, economic and environment-friendly ways of reducing losses caused by leaf rust.

Molecular markers have been widely used in mapping seedling resistance genes for leaf rust. Marker types have changed with advancing technologies and have included restriction fragment length polymorphisms (RFLP), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), simple sequence repeats (SSR), diversity ar-

rays technology (DArT), single nucleotide polymorphisms (SNP), and genotyping-by-sequencing (GBS) (Li et al. 2014). SSR markers became the preferred system in the late 1990s owing to codominance, accuracy, high repeatability, high levels of polymorphism, chromosome specificity, and ease of manipulation (RÖDER et al. 1998). Molecular markers and bulked segregation analysis (BSA) method could be used for linkage mapping of genetic loci conferring seedling resistance to leaf rust. The number, genetic effects, and locations of genes can be estimated by linkage mapping using molecular markers in segregating populations. To date, more than 100 Lr genes have been documented, and 76 have been catalogued (McIntosh et al. 2016). Some linked molecular markers with variable potential for application in marker-assisted selection are available (LI et al. 2014). In addition, our group mapped seven leaf rust seedling resistance genes, LrZH84, LrG98, and LrXi on chromosome 1BL, LrBi16 and LrFun on chromosome 7BL, LrNJ97 on chromosome 2BL, and LrZH22 on 2BS (Zhao et al. 2008; Chen et al. 2010; Li et al. 2010; Zhang et al. 2011; Zhou et al. 2013; Xing et al. 2014; Wang et al. 2016).

Wheat line L224-3 was developed by Huangfanqu Farm of Henan Province and showed high resistance to most of Pt pathotypes in the field. Identifying and mapping the leaf rust resistance gene(s) in L224-3 are very useful for breeding wheat cultivars with durable resistance to leaf rust. In the study molecular markers were tested for mapping a leaf rust resistance gene in L224-3 using a $F_{2:3}$ population from the cross of L224-3 × Zhengzhou 5389.

MATERIAL AND METHODS

Wheat germplasm and *Pt* pathotypes. Resistant parent L224-3, susceptible parent Zhengzhou 5389 and their F_{2:3} lines were included in a genetic analysis. Thirty-six lines with known leaf rust resistance genes were kindly provided by the International Maize and Wheat Improvement Center (CIMMYT). Fifteen *Pt* pathotypes used in multi-pathotype comparisons (Table 1) are maintained at the Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, China. These pathotypes are named following the coding system of Long and Kolmer (1989), with addition of a fourth letter for the reactions to a fourth quartet of differentials (http://www.ars.usda.gov/SP2 UserFiles/ad_hoc/36400500Cerealrusts/pt_nomen.pdf).

Seedling test. L224-3, Zhengzhou 5389, and 36 lines with known Lr genes were inoculated with 15 Pt pathotypes (Table 1) for comparison of the leaf rust reaction patterns. L224-3, Zhengzhou 5389, 16 F_1 plants, and 144 $F_{2:3}$ lines with 30 seedlings each were inoculated with Chinese Pt pathotype FHBQ (virulent on Zhengzhou 5389 and avirulent on L224-3 at the seedling stage).

Seedlings were grown in a growth chamber. Inoculations were performed when the first leaves were fully expanded, by brushing urediniospores from fully infected susceptible genotypes onto the seedlings to be tested. Inoculated seedlings were placed in plastic-covered cages at 18°C and 100% relative humidity (RH) for 24 h in darkness. They were then transferred to a growth chamber maintained with 12 h light/12 h darkness at 22–25°C and 70% RH. Infection types (ITs) were scored 10–14 days after inoculation according to the Stakman scale as modified by ROELFS *et al.* (1992). Designations of + and – were used with the 0 to 4 scale to indicate larger and smaller uredinia than normal.

DNA extraction and bulk preparation. Genomic DNA was extracted from uninfected $F_{2:3}$ seedling leaves of all lines (30 plants per $F_{2:3}$ line as a bulk) including the parents by the CTAB method (Sharp et al. 1988). DNA was quantified with a UV spectrophotometer, and diluted to a final concentration of 30 ng/µl prior to further analysis.

Bulked segregant analysis (MICHELMORE et al. 1991) was performed to identify molecular markers putatively linked to the leaf rust resistance gene in Zhoumai 22. DNA from 10 homozygous resistant and 10 homozygous susceptible $F_{2:3}$ lines based on the seedling test were mixed in equal amounts to form resistant and susceptible bulks. The DNA bulks and samples from the two parents were tested for polymorphism using SSR primers.

Marker analysis. A total of 1276 SSR markers available in GrainGenes 2.0 (http://wheat.pw.usda.gov) and a STS (sequence tagged-site) marker ω-secali/Glu-B3 were used to search for polymorphisms between the parents of the mapping populations. The SSRs used in this study were BARC (Song et al. 2002), CFA and CFD (Sourdille et al. 2004), WMC (Gupta et al. 2002) and GWM (Röder et al. 1998) series.

Markers that showed similar patterns of polymorphism between the bulks and parents were used to assay the mapping populations. SSR analysis followed BRYAN *et al.* (1997) with minor modifications.

PCR were performed in volumes of 20 µl containing 1.0 U Taq DNA polymerase (Zexing Biotechnology

Table 1. Seedling infection types of 36 control wheat lines with known leaf rust resistance and the two cultivars to 15 *Puccinia triticina* pathotypes

line	gene	Pathotypes														
		PH KS	MH JS	FH DQ	FG BQ	FH BR	FH BQ	FG BR	PH JL	FH DR	FG DQ	FH DS	TH JP	TG TT	PH GP	TH JC
RL6003	Lr1	4	4	;;	;;	;;	;;	;;	4	0	;;	0	4	4	4	4
RL6016	Lr2a	;;	;;	1+	;;	;;	1	1	3	;;	;;	2	3	3	;;	4
RL6047	Lr2c	4	1	4	4	4	4	4	4	4	4	4	4	4	4	4
RL6002	Lr3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
RL6010	Lr9	;	;	;	;	0;	0	0	;	0	0	;	;	;	0	;
RL6005	<i>Lr16</i>	4	4	4	4	4	4	3+	3+	4	4	4	4	4	3	4
RL6064	Lr24	;;1	;	;;	;;	;;	;;	;;	;	;	;	;	;	;	;	;
RL6078	<i>Lr26</i>	4	4	4	1	4	4	;	4	4	1	4	4	2	4	4
RL6007	Lr3ka	X	X	;	;	;	;	1	1	;	;	;	1	4	;	X
RL6053	<i>Lr11</i>	4	4	1	;	;	1+	2	3+	1	1	2	4	3+	4	4
RL6008	<i>Lr17</i>	4	3+	3+	2	2	2	2+	4	3+	4	4	4	4	2+	4
RL6049	<i>Lr30</i>	3C	1	1	;	;	;	;	1	;	;	;	;	4	;	1
RL6051	LrB	3+	4	4	4	3+	4	4	3+	4	4	4	4	4	4	X
RL6004	<i>Lr10</i>	3	3	4	4	4	4	4	2	4	4	4	2+	4	1	X
RL6013	Lr14a	4	4	X	X	X	X	X	X	X	2	4	4	4	3+	X
RL6009	<i>Lr18</i>	1	1+	2	2	4	2	4	1+	4	2+	2	4	3+	3C	3
RL6019	Lr2b	1	0;	4	;	3	3+	2	4	3	3+	3+	2	4	3C	4
RL6042	Lr3bg	4	4	4	4	4	3+	4	4	4	4	4	4	4	4	4
RL4031	<i>Lr13</i>	3	4	4	3	3	4	4	3	3	2	3+	4	4	4	4
RL6006	Lr14b	4	4	4	4	4	4	4	4	4	4	4	X	4	X	4
RL6052	<i>Lr15</i>	1	;	;	;	;	;	;	4	1	;	;	4	3+	4	4
RL6040	<i>Lr19</i>	0	0	;	0	0	;	0	0	0	0	;	0	0	0	;
RL6092	<i>Lr20</i>	4	4	;	;	;	;	0	;	;	;	;	4	1	4	;
RL6043	Lr21	4	2	2	;	2+	3	2	;	1	;	1+	;	3	1	1
RL6012	<i>Lr23</i>	4	4	4	3+	3+	4	3+	1	4	4	4	4	4	3+	4
RL6079	<i>Lr28</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RL6080	<i>Lr29</i>	0	0	0	0	;	0	0	;	;	0	3+	4	;	0	0
RL6057	<i>Lr33</i>	3	4	3+	3+	3+	4	2+	3C	3+	3	4	4	4	3+	3+
E84018	<i>Lr36</i>	4	2	1+	;	2	2	1	1	2	2+	3	2+	3+	2+	3+
KS86NGRC02	<i>Lr39</i>	;	;1	;	;	;	;	;	;	;	;	;	;	;	;	;
KS91WGRC11	Lr42	;	;	;	0	0	;	;	;	1	;	;	0	;	0	1
RL6147	<i>Lr44</i>	1	;	4	4	4	4	4	1	4	4	4	;	1+	;1	1
RL614	<i>Lr45</i>	4	4	4	4	4	4	4	;	4	4	4	4	;	;	;
PAVON76	<i>Lr47</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C78.5	Lr51	;	;	;	;	1	;	0	;	;	;	;	0	;	;	;
-98M71	<i>Lr53</i>	;	0	0	0	0	0	0	;	0	0	0	0	0	0	0
L224-3	LrL224	3	3+	;1	0	1	1	0	3	2	;	;	3	2	2+	;
Zhou 8425B	LrZH84	4	3+	2	0	3c	4	0	4	3+	0	2	4	2	4	4
Zhengzhou 5389	+	4	4	4	4	3+	4	4	4	4	4	4	4	4	4	4

Infection types follow 0-4 scale (ROELFS *et al.* 1992): 0 = no uredinia or other macroscopic signs of infection; ; = no uredinia, but hypersensitive necrotic or chlorotic flecks of varying size; 1 = small uredinia surrounded by necrosis; 2 = small to medium uredinia surrounded by green islands; X = random distribution of variable-sized uredinia on single leaf with a pure culture; 3, 4 = medium to large uredinia without chlorosis or necrosis; + = uredinia somewhat larger than normal for the infection type; - = uredinia somewhat smaller than normal for infection type; C = more chlorosis than normal for infection type

Table 2. $F_{2:3}$ phenotype, genotype and the corresponding alleles at SSR loci *Xbarc8* and *Xgwm582* in the cross of L224-3 × Zhengzhou 5389

Marker	Г	Γ	Allele			
loci	F _{2:3} phenotype	F _{2:3} genotype	A	Н	В	
Xbarc8		RR(35)	35	0	0	
	resistant (98)	<i>Rr</i> (63)	4	56	3	
Xgwm582	susceptible (46)	rr(46)	0	4	42	
	magistant (09)	RR(35)	35	0	0	
	resistant (98)	<i>Rr</i> (63)	4	58	1	
	susceptible (46)	rr(46)	0	8	38	

RR – homozygous resistant; Rr – segregating; rr – homozygous susceptible; A – homozygous for the L224-3 allele, B – homozygous for the Zhengzhou 5389 allele, H – heterozygous

Co. Ltd, Beijing, China), $1 \times PCR$ buffer (50 mM KCl, 10 mM Tris-HCl, 1.5 mM MgCl₂, pH 8.3), 200 μ M of each dNTP, 6 pmol of each primer and 60 ng of template DNA. The PCR conditions were as follows: denaturation at 94°C for 4 min, followed by 35 cycles of 94°C for 1 min, 50–61°C (depending on the primer pair) for 1 min, 72°C for 1 min and a final extension for 10 min at 72°C. PCR products were mixed with 8 μ l of formamide loading buffer (98% formamide, 10 mM EDTA, 0.25% bromophenol blue, 0.25% xylene cynol, pH 8.0). Each sample (5 μ l) was loaded on 6% non-denaturing polyacrylamide gels, and run at 300 V for approximately 1 h and visualized by silver staining (BASSAM *et al.* 1991).

Linkage analysis and map construction. Goodness-of-fit of observed and expected segregation ratios was evaluated by chi-squared (χ^2) tests. Linkage analysis was performed using the software MapManager QTXb20 (Manly *et al.* 2001) and recombination values were converted to centiMorgans using the Kosambi mapping function (Kosambi 1944). The chromosomal assignments of the linkage groups

were based on published wheat maps (Somers *et al.* 2004) and GrainGenes (http://wheat.pw.usda.gov).

RESULTS

Seedling reactions of L224-3. In seedling tests with 15 *P. triticina* pathotypes (Table 1), L224-3 was resistant to four pathotypes avirulent to Lr26, indicating that Lr26 was present in L224-3. The presence of Lr26 in L224-3 was also confirmed by molecular marker ω -secalin/Glu-B3 (DE FROIDMONT 1998; Chai et al. 2006). L224-3 was postulated to also possess other unknown genes according to their low reactions with certain Lr26-virulent pathotypes (Table 1).

Inheritance of seedling leaf rust resistance in L224-3. In the seedling test with pathotype FHBQ with virulence to Lr26, L224-3 was resistant with infection type (IT) 1, whereas Zhengzhou 5389 was susceptible with IT 4. F_1 plants were resistant with IT 1 to 2. Of 144 $F_{2:3}$ lines tested with FHBQ, 35 lines were homozygous resistant, 63 segregated and 46 were homozygous susceptible, fitting a 1:2:1 ratio ($\chi^2_{1:2:1}$ = 3.93, 2df, P > 0.10, Table 2), indicating a single dominant gene for resistance besides Lr26. The dominant gene in L224-3 was tentatively designated as LrL224, conferred resistance to the pathotype FHBQ.

Linkage analysis and genetic map. Of 1276 SSR markers and 1 STS marker ω -secalin/Glu-B3, five (barc8, gwm582, wmc419, wmc694 and ω -secalin/Glu-B3) on chromosome 1B showed polymorphisms between the resistant and susceptible bulks, indicating that LrL224 was located on chromosome 1B. The five polymorphic markers were then screened on DNA from the 144 F_{2:3} lines previously tested with leaf rust. The results showed that resistance gene LrL224 was closely linked to the five loci with genetic distances ranging from 4.3 cM to 14.3 cM (Figure 3). The two closest flanking SSR loci were Xbarc8-1RS and Xgwm582-1BL with genetic distances of 4.3 cM and 4.6 cM (Figures 1–3; Table 2), respectively.

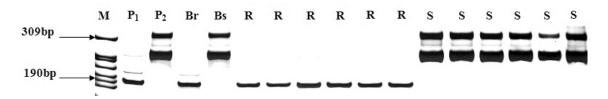


Figure 1. The result of Native-PAGE of L224-3, Zhengzhou 5389, resistant and susceptible bulks, and their $F_{2:3}$ lines by the marker *Xbarc8*; M – molecular marker PBR322; P1– resistant parent L224-3; P2 – susceptible parent Zhengzhou 5389; Br – resistant bulk; Bs – susceptible bulk; R – resistant $F_{2:3}$ lines plants; S – susceptible $F_{2:3}$ lines plants

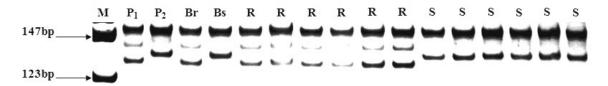


Figure 2. The result of Native-PAGE of L224-3, Zhengzhou 5389, resistant and susceptible bulks, and their $F_{2:3}$ lines by the marker Xgwm582; M – molecular marker PBR322; P1– resistant parent L224-3; P2 – susceptible parent Zhengzhou 5389; Br – resistant bulk; Bs – susceptible bulk; R – resistant $F_{2:3}$ lines plants; S – susceptible $F_{2:3}$ lines plants

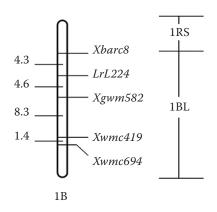


Figure 3. Linkage map of four molecular markers and wheat leaf rust resistance gene LrL224 on chromosome 1B

DISCUSSION

Comparison of LrL224 with leaf rust resistance genes located on chromosome 1B. Nine leaf rust resistance genes Lr26, Lr33, Lr44, Lr46, Lr51, Lr55, LrZH84, LrXi and LrG98 are located on chromosome 1B. Lr26 was originally derived from Secale cereale, Lr33 was derived from a common wheat line, Lr44 was derived from spelt wheat, and Lr51 was present in alien chromosome segments derived from Aegilops speltoides (HIEBERT et al. 2005). In the present seedling tests, Lr33 and Lr44 performed susceptible to pathotypes FHDQ, FHBR, FHBQ and FHDS, indicating that *LrL224* is different from *Lr33* and *Lr44*. Based on the seedling tests with 15 P. triticina pathotypes in this study, Lr51 was highly resistant to all pathotypes, whereas LrL224 was susceptible to the part of the pathotypes, indicating that *LrL224* is different from Lr51. Lr46 is an adult-plant resistance gene located in the terminal region of the long arm of wheat chromosome 1B (Singh et al. 1998; Rosewarne et al. 2006). *Lr55* is present in alien chromosome segments derived from Elymus trachycaulis (McIntosh et al. 2005), so it is different from LrL224. Three resistance genes LrZH84, LrXi and LrG98 on 1B were reported previously in our group (Zhao et al. 2008; Li et al. 2010; CHEN et al. 2010), and all of them are near to LrL224. ZHOU *et al.* (2013b) reported that *LrXi*, *LrG98*, and *LrZH84* were likely to be allelic or closely linked. In the present seedling tests, Zhou8425B was susceptible to pathotypes FHBQ avirulent to *LrL224*, suggesting *LrL224* is different from *LrZH84*. The genetic relationship between *LrL224* and these genes should be tested in the future.

Adult plant resistance of L224-3. To identify adult plant resistance (APR) present in L224-3 the F_{2:3} population from L224-3 × Zhengzhou 5389 was also grown in the field for leaf rust evaluation. Leaf rust epidemics were initiated by inoculating *Pt* pathotypes virulent to L224-3 at the seedling stage. The result showed that *LrL224* was susceptible with IT 4 in the field, but it had a low maximum disease severity (MDS) score of 0–5%, indicating L224-3 showed a high level of APR to Chinese *Puccinia triticina* pathotypes in the field. Now QTL mapping for APR gene in the population is underway. Seedling gene and APR gene present in L224-3 as well as their closely linked molecular markers will be potentially useful for improving leaf rust resistance in wheat breeding programs in China.

Acknowledgments. This project was supported by National Natural Science Foundation of China (31361140367, 31601299 and 31571662), Natural Science Foundation of Hebei Province (C2016104013), Natural Science Research Project of Provincial Higher Education in Hebei province (QN2016316).

References

Bassam B.J., Caetano-Anolles G., Gresshoff P.M. (1991): Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196: 80–83.

Bryan G.J., Collins A.J., Stephenson P., Orry A., Smith J.B., Gale M.D. (1997): Isolation and characterization of microsatellites from hexaploid bread wheat. Theoretical and Applied Genetics, 94: 557–563.

Chai J.F., Zhou R.H., Jia J.Z., Liu X. (2006): Development and application of a new co-dominant PCR marker for detecting 1BL.1RS wheat-rye chromosome translocations. Plant Breeding, 125: 302–304.

- Chen X.C., Li X., Li Z.F., Zhang H., Chen H., Gao M., Liu D.Q. (2010): Molecular mapping of leaf rust resistance gene in Chinese wheat line Guizhou98-18. Acta Phytopathologica Sinica, 40: 489–494.
- De Froidmont D. (1998): A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science, 27: 229–232.
- Dong J.G. (ed) (2001): Agricultural Plant Pathology. Beijing, China Agriculture Press.
- Gupta P.K., Balyan H.S., Edwards K.J., Isaac P., Korzun V., Röder M., Gautier M.F., Joudrier P., Schlatter A.R., Dubcovsky J., De la Pena R.C., Khairallah M., Penner G., Hayden M.J., Sharp P., Keller B., Wang R.C.C., Hardouin J.P., Jack P., Leroy P. (2002): Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics, 105: 413–422.
- Hiebert *C.*, Thomas J., McCallum B. (2005): Locating the broad-spectrum wheat leaf rust resistance gene *Lr52* (*LrW*) to chromosome 5B by a new cytogenetic method. Theoretical and Applied Genetics, 110: 1453–1457.
- Kosambi D.D. (1944): The estimation of map distances from recombination values. Annals of Eugenics, 12: 172–175.
- Li X., Li Z.F., Li Y.N., Zhao Z.Q., Liu D.Q., Wang C.F., Gao L.J. (2010): Genetic analysis and molecular mapping of leaf rust resistance gene in wheat line Xinong 1163-4. Scientia Agriculturae Sinica, 43: 2397–2402.
- Li Z.F., Lan C.X., He Z.H., Singh R.P., Rosewarne G.M., Chen X.M., Xia X.C. (2014): Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 54: 1907–1925.
- Long D.L., Kolmer J.A. (1989): A North American system of nomenclature for *Puccinia triticina*. Phytopathology, 79: 525–529.
- Manly F.F., Cudmore Jr R.H., Meer J.M. (2001): Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome, 12: 930–932.
- McIntosh R.A., Devos K.M., Dubcovsky J., Rogers W.J., Morris C.F., Appels R., Anderson O.D. (2005): Catalogue of Gene Symbols for Wheat: 2005 Supplement. Available at http://shigen.lab.nig.ac.jp/wheat/komugi/top/top.jsp.
- McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. (2016): Catalogue of Gene Symbols for Wheat: 2015–2016 Supplement. Available at http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf
- Michelmore R.W., Paran I., Kesseli R.V. (1991): Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88: 9828–9832.
- Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. (1998): A microsatellite map of wheat. Genetics, 149: 2007–2023.

- Roelfs A.P., Singh R.P., Saari E.E. (1992): Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, CIMMYT.
- Rosewarne G.M., Singh R.P., Huerta-Espino J., William H.M., Bouchet S., Cloutier S., McFadden H., Lagudah E.S. (2006) Leaf tip necrosis, molecular markers and b1-proteasome subunits associated with the slow rusting resistance genes *Lr46*/*Yr29*. Theoretical and Applied Genetics, 112: 500–508.
- Sharp P.J., Kreis M., Shewry P.R., Gale M.D. (1988): Location of β -amylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 75: 286–290.
- Singh R.P., Mujeeb-Kazi A., Huerta-Espino J. (1998): *Lr46*: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 88: 890–894.
- Somers D.J., Isaac P., Edwards K. (2004): A high-density microsatellite consensus map for bread wheat (*Triticum aestivum* L.). Theoretical and Applied Genetics, 109: 1105–1114.
- Song Q.J., Fickus E.W., Cregan P.B. (2002): Characterization of trinucleotide SSR motifs in wheat. Theoretical and Applied Genetics, 104: 286–293.
- Sourdille P., Singh S., Cadalen T., Brown-Guedira G.L., Gay G., Qi L., Gill B.S., Dufour P., Murigneux A., Bernard M. (2004): Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (*Triticum aestivum* L.). Functional and Integrative Genomics, 4: 12–25.
- Wang C.F., Yin G.H., Xia X.C., He Z.H., Zhang P.P, Yao Z.J., Qin J.Y., Li Z.F., Liu D.Q. (2016): Molecular mapping of a new temperature-sensitive gene *LrZH22* for leaf rust resistance in Chinese wheat cultivar Zhoumai 22. Molecular Breeding, 36: 18.
- Xing L.F., Wang C.F., Xia X.C., He Z.H., Chen W.Q., Liu T.G., Li Z.F., Liu D.Q. (2014): Molecular mapping of leaf rust resistance gene *LrFun* in Romanian wheat line Fundulea 900. Molecular Breeding, 33: 931–937.
- Zhang H., Xia X.C., He Z.H., Li X., Li Z.F., Liu D.Q. (2011): Molecular mapping of leaf rust resistance gene *LrBi16* in Chinese wheat cultivar Bimai 16. Molecular Breeding, 28: 527–534.
- Zhao X.L., Zheng T.C., Xia X.C., He Z.H., Liu D.Q., Yang W.X., Yin G.H., Li Z.F. (2008): Molecular mapping of leaf rust resistance gene *LrZH84* in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 117: 1069–1075.
- Zhou H.X., Xia X.C., He Z.H., Li X., Wang C.F., Li Z.F., Liu D.Q. (2013a): Molecular mapping of leaf rust resistance gene *LrNJ97* in Chinese wheat line Neijiang 977671. Theoretical and Applied Genetics, 126: 2141–2147.
- Zhou Y., Xia X.C., He Z.H. Li X., Li Z.F., Liu D.Q. (2013b): Fine mapping of leaf rust resistance gene *LrZH84* using expressed sequence tag and sequence-tagged site markers, and allelism with other genes on wheat chromosome 1B. Phytopathology, 103: 169–174.

Received for publication February 12, 2017 Accepted after corrections August 22, 2017 Published online October 25, 2017