Quantitative Trait Loci Conferring Grain Selenium Nutrient in Durum Wheat × Wild Emmer Wheat RIL Population

Jun YAN¹, Wen-tao XUE², Rong-zhi YANG², Hai-bo QIN³, Gang ZHAO¹, Fahima TZION⁴ and Jian-ping CHENG²*

¹Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture, School of Pharmacy and Bioengineering, Chengdu University, Chengdu, P.R. China; ²College of Agriculture, Guizhou University, Guiyang, P.R. China; ³State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, P.R. China; ⁴Institute of Evolution, University of Haifa, Haifa, Israel *Corresponding author: jpcheng@gzu.cdu.cn

Abstract

Yan J., Xue W.-T., Yang R.-Z., Qin H.-B., Zhao G., Tzion F., Cheng J.-P. (2018): Quantitative trait loci conferring grain selenium nutrient in durum wheat × wild emmer wheat RIL population. Czech J. Genet. Plant Breed., 54: 52–58.

The genetic and phenotypic basis of grain selenium concentration (GSeC) and yield per plant (GSeY) was studied in a tetraploid wheat population consisting of 152 $\rm F_6$ recombinant inbred lines (RILs) derived from a cross between *Triticum dicoccoides* (accession G18-16) and durum wheat cultivar Langdon (LDN) grown under three different environments over 2 years. Wide genetic variation was found among RILs for GSeC and GSeY. A total of 15 QTL effects on 9 chromosomes associated with GSeC and GSeY were detected, with a logarithm od the odds (LOD) score ranging from ca. 3.2 to 11.7, explaining 1.4% to 18.6% of the phenotypic variation. Higher GSeC and GSeY were conferred by the G18-16 allele at 10 loci and by the LDN allele at 5 loci. Seven QTLs showed interactions with environmental conditions. Five genomic regions harbouring QTLs for grain Se concentrations and yields were selected for further marker-assisted selection programs, facilitating the use of wild alleles for improvement of elite wheat cultivars.

Keywords: grain selenium concentration; grain selenium yield; quantitative trait locus mapping; tetraploid wheat; *Triticum dicoccoides*

Selenium (Se) is essential for formation and activity of the enzyme glutathione peroxidase. This enzyme is necessary to protect the body from inflammatory agents, mutagenic agents, and carcinogens (Combs 2001; Rayman 2008). Se enters the food chain mainly through plants. Researchers have shown that Se is an essential trace element for plants and indeed, Se levels in plant foods are generally low (Rayman 2008). Cereal crops such as wheat, oat, rye and barley are non-accumulators of Se, rarely having more than 0.1 mg Se/kg dry weight (WHO 1987). Nevertheless, on a global level, cereal products contribute a major amount of the dietary Se to humans, especially in developing countries such as China and India (FAO/WHO 2001). There is evidence of Se deficiency in

more than 40 countries worldwide. For example, 72% of the areas in China have low or no Se in the soil, and in two-thirds of the population Se intake is deficient (YAN 2010).

Three strategies – dietary diversification, supplementation, and food fortification – are practiced to improve Se nutrient supply, each with its advantages and disadvantages (Ma 2007; Yan 2010). Another strategy was recently explored, biofortification, which aims at increasing nutrition in plant-based foods by breeding. This is a promising and cost-effective approach for diminishing malnutrition (Yan 2010; Velu *et al.* 2014).

Selenium in wheat grain is one of the most bioavailable forms (HAKKARAINEN 1993). However, wheat has

inherently very low concentrations of micronutrients relative to humans' daily requirements. In cultivated wheat, variation in seed Se concentration is relatively small and does not seem to hold any promise for genetic improvement (YAN 2010). However, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the tetraploid progenitor of cultivated durum wheat and bread wheat, is known to harbour wide allelic variation which is relevant for the improvement of various economically important traits in cultivated wheat (UAUY et al. 2006). In our previous study, very high concentrations and substantial variations in grain Se content were found among the wild emmer wheat genotypes, and the variation and absolute values among these genotypes for grain Se concentrations (GSeCs) were much higher than those found among hexaploid and tetraploid wheat cultivars (YAN 2010).

The existence of large genetic variation for micronutrients in grains is essential for the success of breeding programs aimed at developing new micronutrient-rich plant genotypes. The identification of quantitative trait loci (QTLs) may assist these breeding programs; moreover, the application of genetic modifications is being made possible by the increasing availability of information on the biochemistry of mineral accumulation (Peleg et al. 2009). QTL analysis is a powerful tool in agricultural studies, indicating the chromosomal location of genes suitable for breeding programs. For example, a major QTL from wild emmer wheat, pinpointing the chromosomal location of Gpc-B1, a gene associated with increased grain protein, zinc (Zn), and iron (Fe) contents, was found and subsequently cloned (UAUY et al. 2006). A few studies on QTLs for minerals, e.g. Zn, Fe, copper (Cu), manganese (Mn), phosphorus (P), potassium (K), nitrogen (N), sulphur (S), calcium (Ca) and magnesium (Mg), in wheat grains have been reported in recent decades (Peleg et al. 2009; YAN 2010; Pu et al. 2014; TIWARI et al. 2016). However, studies on QTL mapping of GSeC are scarce. Therefore, our objective was to conduct genetic mapping of QTLs for grain Se density with a view to developing near-isogenic lines (NILs) by backcrossing for introgression of genes associated with high GSeC derived from the wild emmer wheat gene pool into elite wheat cultivars.

MATERIAL AND METHOD

Material. A mapping population consisting of $152 \, \text{F}_6$ recombinant inbred lines (RILs) derived from

a cross between the durum wheat cultivar Langdon (LDN, as female), and wild emmer wheat accession G18-16 (as male) originating from Gitit in Israel was used in the current study for genetic mapping of grain mineral QTLs. The RILs were tested in the field under three environments over 2 years as described by Peleg et al. (2008). The environments were WL05 (water-limited /350 mm/ control in 2005), WW05 (well-watered /750 mm/ treatment in 2005), and WW07 (well-watered /720 mm/ treatment in 2007). The wet treatment was irrigated weekly with total amount of 750 or 720 mm, whereas the dry treatment was irrigated every other week with total amount of 350 mm. Water was applied during the winter months (December-March) to mimic the natural pattern of rainfall in the eastern Mediterranean region (Peleg et al. 2008). All spikes were harvested, oven-dried (35°C for 48 h) and weighed. A sub-sample of the harvested spikes from each plot (about 20-30 g) was threshed. Grains of each sub-sample were weighed, used to calculate grain yield (GY) and subjected to mineral concentration analyses (Peleg et al. 2009).

Se determination. The Se concentration in the wheat grains was determined by hydride generationatomic fluorescence spectrometry (HG-AFS) following the protocol described in YAN *et al.* (2011). GSeC was expressed as $\mu g/kg$ dry weight. Grain Se yield (GSeY) was calculated from GSeC and GY, and expressed as $\mu g/plant$ (grain Se concentration per plant).

Statistical analyses. Statistical analyses of the data were conducted using the JMP[®] Ver. 6.0 statistical package. Broad-sense heritability estimate (h^2) was calculated for each trait across the three irrigation regimes, as described in Peleg *et al.* (2009).

QTL analysis. A genetic linkage map of 2317 cM was previously developed for the 152 F_6 RIL mapping population based on 197 single-sequence repeats and 493 diversity array technology (DArT) markers (Peleg *et al.* 2008).

MultiQTL Software v. 2.6 (http://www.multiqtl.com) was used to identify promising QTLs for GSeC and GSeY. QTL detection was carried out with a structured multistep scheme embedded in the software as described in Peleg *et al.* (2009) and Yan (2010).

RESULTS

Phenotypic variations in the RIL mapping population for GSeC and GSeY under different environmental conditions. Analysis of variance

Table 1. Mean values, ranges and heritability estimates (h^2) for grain Se concentration and yield (GSeC and GSeY, respectively) in 152 recombinant inbred lines (RILs), as well as the two parental lines of tetraploid wheat, under three environmental conditions (WL05, WW05, WW07)

	WL05				WW05				WW07				
Trait		RILs	pa	rents		RILs	pa	rents		RILs	pai	rents	h^2
	mean	range	LDN	G18-16	mean	range	LDN	G18-16	mean	range	LDN	G18-16	
GSeC (μg/kg)	69.9	20.7-125.8	54.5	78.5	69.0	22.3-123.7	54.9	83.6	51.0	22.8-95.6	29.3	34.8	0.63
GSeY (μg/plant)	1.90	0.32-3.97	1.23	1.86	3.88	1.15-9.51	2.02	4.21	1.54	0.64-3.53	1.73	0.45	0.56

WL05 – water-limited (350 mm) control in 2005; WW05 – well-watered (750 mm) treatment in 2005; WW07 – well-watered (720 mm) treatment in 2007; LDN – durum wheat cultivar Langdon; G18-16 – wild emmer wheat accession

(ANOVA) indicated significance ($P \le 0.05$) of genetic variation for the analysed nutrient Se. All variables under each of the environments exhibited normal distribution (YAN 2010). For GSeC and GSeY, under the three environments across 2 years, the wild accession (G18-16) showed higher values than the cultivated durum line LDN, except for GSeY-WW07. Transgressive segregation was common for both GSeC and GSeY (Table 1). Broad-sense heritability estimates (h^2) of 0.63 and 0.56, respectively, indicated that the proportion of phenotypic variation in these two parameters could be attributed to genotypic differences (Table 1).

QTLs for grain Se concentration and yield

GSeC. A total of seven significant QTLs were associated with GSeC, with LOD scores ranging from 3.2 to 9.9, explaining 1.4–18.6% of the variation (Table 2). Higher GSeC was conferred by the G18-16 allele at five loci (1A, 1B, 5A, 7A, 7B) and by the LDN allele at two loci (3A, 7B). Two QTLs showed significant $G \times E$ interaction: one QTL (7A) was found only under the WL05 environment (Figure 1).

GSeY. A total of eight significant QTLs were associated with GSeY, with LOD scores ranging from 3.2 to 11.7, explaining 1.4–15.5% of the variation (Table 2). Higher GSeY was conferred by the G18-16 allele at five loci (1A, 1B, 2B, 5A, 7B) and by the LDN allele at three loci (2B, 4B, 6A). Five QTLs showed significant $G \times E$ interaction: two QTL (1B, 6A) were found only under WW07 and one (1A) under the WL05 environment (Figure 1).

DISCUSSION

Human health relies on getting sufficient nutrients in the daily diet (Velu *et al.* 2014). Micronutrient malnutrition, also known as "hidden hunger", is caused

by a lack of dietary vitamins and minerals, such as vitamin A, Zn and Fe, which are essential for good health (http://www.harvestplus.org). Therefore, our previous and present study adds to our knowledge on QTLs for grain contents of protein and some trace elements (Fe, Zn, Se) (Peleg *et al.* 2009; Yan 2010), as well as their yield, which is of particular importance to human nutrition.

Se is of metabolic importance in some plants, due to its involvement in anti-oxidative processes, although the essentiality of Se to higher plants is still under debate (GERM & STIBILJ 2007). Cultivation of plants enriched with Se could be an effective way of producing Se-rich foodstuffs, thereby increasing their health benefits (Lyons et al. 2005). This calls for the exploration of desirable genes/QTLs harboured by valuable cereals as a basis for future development of genetically micronutrient-enriched cereals. Nevertheless, reports of QTLs for grain Se density are limited for crops. Several studies have been conducted on rice (Oryza sativa L.) and lentil (Lens culinaris M.). NORTON et al. (2010) detected six QTLs for grain Se concentration in rice. Four QTLs were detected for grain Se content in rice by YAN et al. (2015). Ates et al. (2016) identified four QTLs associated with seed Se concentration in lentil. There is only one study in which a GSeC QTL has been reported for wheat. Using two RIL populations, Pu et al. (2014) identified five QTLs for GSeC on five chromosomes: 3D, 4A, 4D, 5B and 7D. In the current study, seven new QTLs (on chromosomes 1A, 1B, 3A, 5A, 7A, $2\times7B$) for GSeC, and eight QTLs (on chromosomes 1A, 1B, 2×2B, 4B, 5A, 6A, 7B) for GSeY were identified (Table 2, Figure 1). This is the first study reporting QTLs of both GSeC and GSeY using tetraploid wheat RIL populations. These QTLs may be used to conduct fine mapping for grain Se

https://doi.org/10.17221/112/2016-CJGPB

Table 2. Biometrical parameters of QTLs affecting grain Se concentration and yield (GSeC and GSeY, respectively) in a tetraploid wheat recombinant inbred line (RIL) population (LDN \times G18-16)

: F		1			WL05		WW05		WW07	Favourable	ŗ
lrait	Position (CM)	Position (CM) Nearest marker LO	TOD	var (%)	р	var (%)	р	var (%)	р	allele ^d	S × E
GSeC											
14	169.0 ± 33.3	wPt-5077	5.7**	6.4	8.02 ± 4.00	2.4	2.86 ± 5.05	7.0	6.11 ± 4.23	Ŋ	n.s.
1B	152.2 ± 23.2	wPt-5061	5.3**	3.6	2.95 ± 6.03	2.7	-0.03 ± 5.89	8.1	6.73 ± 4.72	Ŋ	n.s.
3A	69.8 ± 13.9	wPt-1092	5.4**	0.9	-7.64 ± 4.11	5.4	-7.19 ± 4.33	4.4	-5.18 ± 2.98	T	n.s.
5A	26.7 ± 24.2	gwm293	2.6**	13.2	12.10 ± 4.30	2.7	4.10 ± 4.20	1.4	1.18 ± 3.25	Ŋ	*
7A	25.0 ± 39.1	wPt-9926	3.2*	11.4	9.10 ± 7.30	ı	I	ı	1	Ŋ	
7B-QTL1	85.8 ± 43.1	wPt-11565	å	c c	5.12 ± 13.95	0	11.28 ± 18.42		1.49 ± 5.46	Ŋ	ı
7B-QTL2	128.6 ± 23.6	wPt-3730	7.7	Ø.9	-5.79 ± 13.03	18.0	-6.8 ± 16.64	0.0	-0.61 ± 6.76	T	I
GSeY											
1A	149.2 ± 36.1	wPt-4399	3.4*	13.6	0.429 ± 0.262	I	I	I	I	Ŋ	
118	168.3 ± 54.2	wPt-1770	3.6*	ı	I	ı	I	14.7	0.181 ± 0.312	Ŋ	
2B-QTL1	50.4 ± 18.6	wPt-6199	11.7**	13.7	0.311 ± 0.234	15.5	0.601 ± 0.389	3.3	0.008 ± 0.166	Ŋ	I
2B-QTL2	113.5 ± 25.1	wPt-1294			-0.242 ± 0.304		-0.484 ± 0.510		0.054 ± 0.135	Т	I
4B	74.0 ± 14.6	wPt-7156	6.7**	12.2	-0.472 ± 0.142	10.3	-0.756 ± 0.267	1.4	-0.008 ± 0.129	Т	*
5A	88.1 ± 47.6	wmc415a	4.8*	3.2	0.185 ± 0.171	2.6	0.009 ± 0.403	9.6	-0.252 ± 0.232	Ŋ	n.s.
6A	56.1 ± 25.5	wPt-4209	3.2*	I	I	I	I	13.9	-0.339 ± 0.083	Т	
7B	35.4 ± 45.8	gwm263,	7.4**	7.4	0.322 ± 0.204	1.9	0.111 ± 0.327	11.4	-0.349 ± 0.116	Ŋ	*

 $LOD-logarithm\ of\ the\ odds\ scores\ that\ were\ found\ significant\ when\ comparing\ hypotheses\ H_1\ (there\ is\ a\ QTL\ in\ the\ chromosome)\ vs.\ H_0\ (no\ effect\ of\ the\ chromosome\ on\ the\ chromosome)$ trait), using 1000 permutations test; var - percentage of explained variation of the trait; d - effect of the QTL; favourable allele - favourable parental allele (from Langdon /L/ or G18-16/G/) contributing to better grain mineral concentration; G × E – genotype × environment interaction, tested by comparing the model with a new sub-model in which the QTL is assumed to have equal effects in the three environments; this test was not applicable when the QTL was specific for only one environment; *, **, *** and n.s. significant at $P \leq 0.05,\, 0.01,\, 0.001$ or non-significant effect, respectively

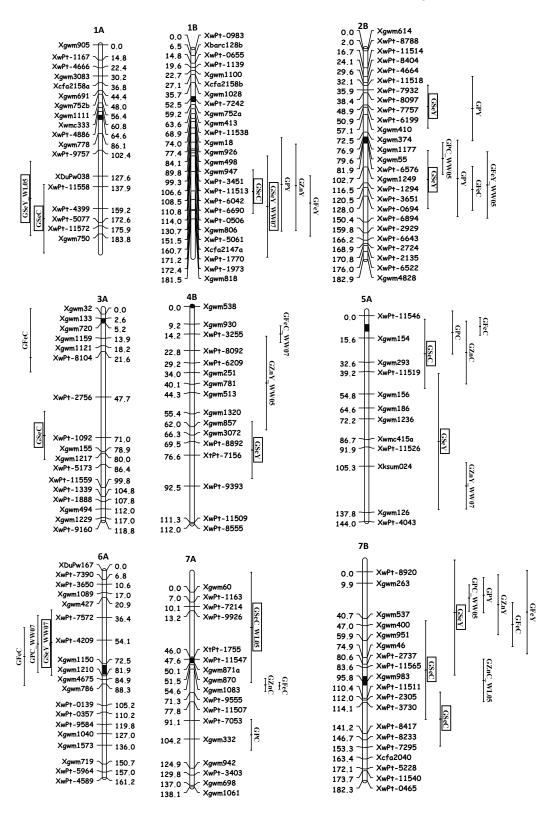


Figure 1. Chromosomal intervals for QTLs associated with grain protein concentration (GPC) and yield (GPY), and grain mineral nutrient concentrations and yield, respectively, of zinc (GZnC, GZnY), iron (GFeC, GFeY), and selenium (GSeC, GSeY) in tetraploid wheat recombinant inbred lines under three environments: WL05 – water-limited (350 mm) control in 2005; WW05 – well-watered (750 mm) treatment in 2005; WW07 – well-watered (720 mm) treatment in 2007; the data on GFeC, GZnC and GPC are based on Peleg *et al.* (2009); the data on GFeY, GZnY and GPY are according to YAN (2010)

density with the aim of transferring chromosome segments carrying high grain Se density alleles into elite wheat cultivars by marker-assisted breeding methodologies.

Various studies have indicated that more favourable alleles are found in the wild type than in cultivars (PENG et al. 2003). SOLLER and BECKMANN (1988) indicated that QTL mapping could uncover "cryptic" genetic variation (beneficial alleles) that is otherwise hidden in a sea of deleterious alleles. PENG et al. (2003) identified 75 domesticated QTLs for 11 agronomic traits, and wild QTL alleles of T. dicoccoides for 18 (24%) traits with agriculturally beneficial effects. These cryptic alleles, together with genes for resistance or tolerance to biotic and abiotic stresses and high protein content, could advance the utilization of *T. dicoccoides* for wheat improvement. In this and in our previous study, 23 out of the 41 QTLs for wild alleles contributed to the improvement of grain minerals and protein densities. The present results combined with our previous study (Peleg et al. 2009; YAN 2010) showed that a total of 14 QTLs conferred by the G18-16 alleles are associated with grain Se, Zn, Fe and protein concentrations and yield on five chromosomes: 1A, 1B, 2B, 5A and 7B (Figure 1). The five genomic regions harbouring QTLs were selected by marker-assisted selection for production of NILs with the most promising QTLs.

There were effects of environment on QTLs of GSeC and GSeY. The genotype × environment interactions $(G \times E)$ were noted for QTLs of GSeC and GSeY. There were significant $G \times E$ interactions for two QTLs for GSeC on two chromosomes: 1A and 5A, and five QTLs for GSeY on five chromosomes: 1A, 1B, 4B, 6A and 7B. What matters was the fact that there were differences in QTLs for GSeY on three chromosomes: 1B, 6A and 7B between two similar environments (WW05, WW07). We think that soil fertility was lower in WW07 than in WW05, because the RIL wheat in WW07 was planted in the same field as WW05 without application of any fertilizer. Soil fertility could play an important role in Se accumulation in RIL wheat grain. Grain Se content appears to be determined overwhelmingly by soil available Se concentration, which is influenced by pH, redox potential, cation exchange capacity, and levels of organic carbon, S, Fe and Al (Lyons et al. 2005). The QTLs for GSeY on two chromosomes 1B, 6A appeared in WW07. It could mean that the lower soil fertility was somehow more beneficial for an increase in GSeY. What the effects of soil fertility on QTLs of GSeC and GSeY are like is certainly worthy of further study.

The QTL distribution on all chromosomes was highly non-random. A total of 41 QTLs were distributed on 9 of 14 chromosomes and more than one-half of the effects for different grain mineral and protein concentrations and yields were detected on chromosomes 1B, 2B, 5A and 7B. Some of the protein and mineral content QTLs overlapped. Clusters of grain protein and micronutrient QTL effects were distributed on several chromosomes. Colocalisation of the Fe, Zn and Se effects at the same loci (1B, 2B, 5A, 7B) supports the notion that maintaining cation homeostasis requires a network of metal uptake, transport, trafficking and sequestration mechanisms, tightly controlled by several genes, which might not be metal-specific (Clemens 2001). Our results may reflect either linkage or pleiotropy of the corresponding QTLs for protein, Fe, Zn and Se concentrations and yields, similar to the previously mentioned wild wheat allele Gpc-B1 which is associated with increased grain protein, Zn, and Fe content (UAUY et al. 2006). However, coupling tight linkage and pleiotropy could better explain the data, especially due to the high correlation between some traits (PENG et al. 2003; Peleg et al. 2009). The presence of these clusters, especially those on chromosomes 5A and 7B harbouring colocalised QTL effects for all four target traits, implies that selection and/or breeding for high Zn, Fe and Se levels in seeds may simultaneously result in a high level of protein. The colocalisation of the QTL effects for grain Fe, Zn, Se and protein yields on chromosome 7B is flanked by markers *Xgwm263* -*Xgwm537*. The chromosome segment is 10 cM long. Fine mapping of the region harbouring these QTLs can pinpoint the chromosome segment that can be introgressed into elite cultivars, thereby avoiding potential effects of linkage drag of negative traits. Thus, these clustered QTL effects would be highly useful for synchronously improving Zn, Fe, Se and protein densities of wheat grain by introgressing genes from T. dicoccoides.

Acknowledgments. This work was supported by the National Science Foundation of China (No. 31560578), and China—Israel cooperation program grants from the Ministry of Science and Technology in China (No. 2013DFA32200). The authors are greatly indebted to Prof A. Korol, Prof Y. Saranga and Dr. Z. Peleg in Israel for supplying seeds and previous data, as well as excellent help with the statistical analyses and comments.

References

- Ates D., Sever T., Aldemir S., Yagmur B., Temel H.Y., Kaya H.B., Alsaleh A., Kahraman A., Ozkan H., Vandenberg A., Tanyolac B. (2016): Identification QTLs controlling genes for se uptake in lentil seeds. PLoS ONE, 11: e0149210.
- Clemens S. (2001): Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212: 475–486.
- Combs G.F. (2001): Selenium in global food systems. British Journal of Nutrition, 85: 517–547.
- FAO/WHO (2001): Human Vitamin and Mineral Requirements. Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand. Rome, Food and Nutrition Division, FAO.
- Germ M., Stibilj V. (2007): Selenium and plants. Acta Agriculturae Slovenica, 89: 65–71.
- Hakkarainen J. (1993): Bioavailability of selenium. Norwegian Journal of Agricultural Science, 11: 21–35.
- Lyons G.H., Genc Y., Stangoulis J.C., Palmer L.T., Graham R.D. (2005): Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biological Trace Element Research, 103: 155–168.
- Ma G. (2007): Iron and zinc deficiencies in China: existing problems and possible solutions. [PhD. Thesis.] Wageningen, Wageningen University.
- Norton G.J., Deacon C.M., Xiong L., Huang S., Meharg A.A., Price A.H. (2010): Genetic mapping of the rice ionome in leaves and grain: Identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil, 329: 139–153.
- Peleg Z., Saranga Y., Yazici A., Fahima T., Ozturk L., Cakmak I. (2008): Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil, 306: 57–67.
- Peleg Z., Cakmak I., Ozturk L., Yazici A., Jun Y., Budak H., Korol A.B., Fahima T., Saranga Y. (2009): Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theoretical and Applied Genetics, 119: 353–369.
- Peng J.H., Ronin Y., Fahima T., Roder M., Li Y., Nevo E., Korol A.B. (2003): Domestication quantitative trait loci in *Triticum dicoccoides*, the progenitor of wheat. Proceedings of the National Academy of Sciences of the United States of America, 100: 2489–2494.
- Pu Z.E., Yu M., He Q.Y., Chen G.Y., Wang J.R., Liu Y.X., Jiang Q.T., Li W., Dai S.F., Wei Y.M., Zheng Y.L. (2014):

- Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. Journal of Integrative Agriculture, 13: 2322–2329.
- Rayman M.P. (2008): Food-chain selenium and human health: emphasis on intake. British Journal of Nutrition, 100: 254–268.
- Soller M., Beckmann J.S. (1988): Genomic genetics and the utilization for breeding purposes of genetic variation between populations. In: Weir B.S., Eisen E.J., Goodman M.M., Namkoog G. (eds): Proc. 2nd Int. Conf. Quantitative Genetics. Sunderland, Sinauer Association: 161–188.
- Tiwari C., Wallwork H., Arun B., Mishra V.K., Velu G., Stangoulis J., Kumar U., Joshi A.K. (2016): Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica, 207: 563–570.
- Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006): A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314: 1299–1301.
- Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R.P. (2014): Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 59: 365–372.
- WHO (1987): Selenium. A Report of the International Programme on Chemical Safety. Environmental Health Criteria 58, Geneva, World Health Organization.
- Yan H., Sun C., Jie M., Chen Y., Tong C., Bao J. (2015): Association mapping of quantitative trait loci for mineral element contents in whole grain rice (*Oryza sativa* L.). Journal of Agricultural & Food Chemistry, 63: 10885–10892.
- Yan J. (2010): Grain mineral and protein concentrations of wild emmer wheat (*Triticum dicoccoides*) and wild barley (*Hordeum spontaneum*) and their potential for crop improvement. [PhD. Thesis.] Haifa, University of Haifa.
- Yan J., Wang F., Qin H.B., Chen G.X., Nevo E., Fahima T., Cheng J.P. (2011): Natural variation in grain selenium concentration of wild barley, *Hordeum spontaneum* derived from Israel. Biological Trace Element Research, 142: 773–786.

Received for publication July 10, 2016 Accepted after corrections October 9, 2017 Published online March 21, 2018