to the Fusarium oxysporum f.sp. radicis-lycopersici Resistance Frl Gene in Tomato

MIROSŁAWA STANIASZEK¹, WOJCIECH SZCZECHURA¹ and WALDEMAR MARCZEWSKI²

¹Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Research Institute of Horticulture, Skierniewice, Poland; ²Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Poland

Abstract

STANIASZEK M., SZCZECHURA W., MARCZEWSKI W. (2014): Identification of a new molecular marker C2-25 linked to the Fusarium oxysporum f.sp. radicis-lycopersici resistance Frl gene in tomato. Czech J. Genet. Plant Breed., 50: 285–287.

Fusarium oxysporum Schlecht. f.sp. radicis-lycopersici Jarvis & Schoemaker (FORL) is a saprophytic fungus, responsible for the fusarium crown and root rot disease in tomato (Solanum lycopersicum L.). This is one of the most destructive pathogens of this species. A new cleaved amplified polymorphic sequence (CAPS) marker C2-25 was developed for the detection of the dominant gene Frl, which confers tomato resistance to FORL. C2-25 was amplified from a conserved ortholog set II (COSII) sequence C2_At2g38025. The XapI-derived restriction product of 700 bp was informative for the identification of FORL resistant tomato genotypes and can be used as a diagnostic marker in tomato breeding programmes and hybrid seed production.

Keywords: CAPS marker; fusarium crown and root rot; marker assisted selection (MAS); Solanum lycopersicum L.

The disease fusarium crown and root rot of tomato, caused by Fusarium oxysporum f.sp. radicis-lycopersici (FORL), occurs in the majority of the tomato growing regions worldwide, causing yield losses in commercial tomato production in open field and greenhouse even by 65% (Sonoda 1976; Jones et al. 1991; McGoveren et al. 1998; Ozbay & Newman 2004). The disease occurs at any stage of plant development and is manifested by the chlorosis and necrosis of lower leaves. The vascular tissue of roots has brown discoloration limited up to 10–30 cm above the ground. The tap root of infected plants often rots partially or completely, and brown cankers appear at the soil line. Infected plants can be stunted and withered. The infection can be spread by wounds and natural holes, contaminated seeds, microconidia from the air and infested soil or compost (Jarvis 1988; Di Primo et al. 2001; Stein-KELLNER et al. 2005; KOIKE et al. 2006).

In traditional breeding practice, an artificial inoculation is used for the selection of *F. oxysporum* f.sp. *radicis-lycopersici* resistant lines. This procedure

is time consuming, expensive and requires numerous repetitions. Breeding of resistant cultivars is an alternative approach to chemical treatments, limiting environmental and consumer risks. In tomato, the resistance to FORL is determined by the single dominant gene Frl which is derived from Solanum peruvianum (Yamakawa & Nagata 1975; Berry & OAKES 1987). This gene is located on the long arm of tomato chromosome 9, and is closely linked with the Tm-2² gene (Vakalounakis 1988; Vakalounakis et al. 1997; Fazio et al. 1999). Fazio et al. (1999) indicated that the random amplified polymorphic DNA (RAPD) marker UBC 194, tightly linked to Frl gene, was useful for selecting the resistant tomato genotypes. However, TANYOLAC and AKKALE (2010) and Truong et al. (2011) reported that this amplicon was not informative for the resistance evaluation. Moreover, the RAPD technique produces dominant markers, therefore it is not possible to distinguish whether they are amplified from a locus that is heterozygous or homozygous.

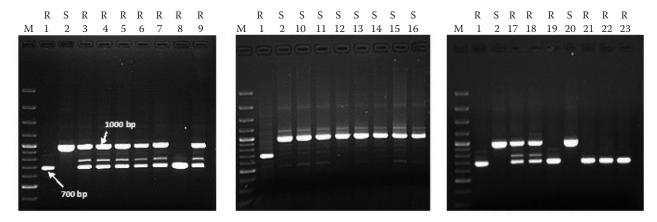


Figure 1. Electrophoretic patterns of the cleaved amplified polymorphic sequence marker C2-25 linked to the tomato gene Frl Lanes: 1 – resistant parent 3070; 2 – susceptible parent A 100; 3–7 and 9 heterozygous F_2 resistant plants; 8 – homozygous F_2 resistant plant; 10–16 F_2 susceptible plants; 17–23 F_1 hybrids FR1/2/10, FR2/1/10, cvs Mospomor, Motelle, Mogeor, F_1 Blitz and cvs Momor, respectively; R – resistant; S – susceptible; M – DNA ladder, 100 bp

In this paper we report a codominant PCR marker C2-25 linked to the locus *Frl* and being useful for the selection of tomato lines resistant to FORL.

Two tomato parental lines were chosen for the study: line 3070, resistant to FORL and homozygous for Frl gene, and A100 line susceptible to FORL. These lines were received from Department of Genetics, Breeding and Biotechnology of Vegetable Plant, Research Institute of Horticulture, Skierniewice. A single F, plant derived from 3070 × A100 mating was self-pollinated to produce 98 F₂ progeny. In addition, three cultivars resistant to FORL: Momor, Mospomor, Mogeor, one susceptible to FORL: Motelle (pedigree information is available on http://tgrc.ucdavis.edu, seeds received from National Institute for Agricultural Research, INRA, Montfavet, France), two experimental F₁ hybrids: FR1/2/10, FR2/1/10 (derived from breeding lines resistant to FORL: 3070 and $3061 \times A100$, received from the collection of Research Institute of Horticulture, Skierniewice) and commercial hybrid Blitz F₁ (De Ruiter Seeds, Bergschenhoek, The Netherlands), were examined. The fungal strain Fusarium oxysporum f.sp. radicis-lycopersici was obtained from National Institute for Agricultural Research, INRA, Montfavet, France. The resistance tests were done according to Kozik (1999). Plants were classified as resistant when no disease symptoms were observed. Out of the 98 F₂ plants evaluated 71 were resistant and 27 were susceptible. DNA was isolated from freeze-dried leaves using a DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany).

A conserved ortholog set II (COSII) sequence C2_At2g38025 which was positioned at 45 cM on tomato chromosome 9 (Tomato-EXPEN 2000, www.

solgenomics.net) was tested by PCR. Forward and reverse primer sequences were: f: 5'-ATGGGCGCT-GCATGTTTCGTG-3', r: 5'- ACACCTTTGTTGAAA-GCCATCCC-3'. DNA amplification was carried out in 20 μ l. The reaction mixture contained: 1× reaction buffer, 0.1mM of each dNTP, 1.5mM MgCl₂, 0.4 μ M of each primer, 1 U Taq DNA polymerase (Invitrogen, Carlsbad, USA) and 30 ng genomic DNA. The PCR was performed on a GeneAmp 9700 thermocycler (Applied Biosystems, Foster City, USA) under the following thermal conditions: 94°C – 60 s, followed by 40 cycles of 94°C – 25 s, 55°C – 35 s, 72°C – 90 s and final extension of 5 min at 72°C. A 1100 bp PCR product was amplified in all parental lines and F_1 plants.

This PCR product was digested by twelve restriction enzymes: DdeI, RsaI, HinfI, DraI, AluI, HpaI, HindIII, XapI, MboI, HaeIII, MunI, EcoRI. Digestion of amplicons was carried out at 37°C for 3 h in a 20 μl mixture containing 5 U of restriction enzyme, 18 µl PCR product and 10x concentrated restriction enzyme buffer. The restriction products were visualized by electrophoresis in 1.4% agarose gel and ethidium bromide staining. Polymorphism was revealed after digestion of the amplicon with *XapI*. The restriction fragment of 700 bp was observed in the resistant parent 3070. In the susceptible parent A100, only 1000 bp long band was found (Figure 1, lanes 1 and 2, respectively). The 700 bp fragment was detected in 69 resistant F2 plants and was not identified in any of 29 susceptible F2 plants, thereby confirming the linkage of the marker with the Frl locus. In the group of F₂ resistant plants 20 and 49 were homozygous and heterozygous for Frl, respectively. Examples of the corresponding patterns are shown in Figure 1. In addition, the marker C2-25 was revealed in three cultivars resistant to FORL: Momor, Mospomor, Mogeor, two experimental F_1 hybrids: FR1/2/10, FR2/1/10 and Blitz F_1 (Figure 1, lanes 17–19 and 21–23) and was not observed in susceptible cultivar Motelle (Figure 1, lane 20). Therefore, we suggest that this marker can be used in tomato breeding programmes to select FORL resistant lines.

Acknowledgements. This work was performed in the framework of Multi-annual Programme "Development of sustainable methods of horticultural production to ensure high biological and nutritional quality of horticultural products and to preserve the biodiversity of the environment and to protect its resources", financed by Polish Ministry of Agriculture and Rural Development; Task 6.6. The authors thank E.U. Kozik and M. Nowakowska, Research Institute of Horticulture, Skierniewice, for providing and evaluation of the plant material used in this study.

References

- BERRY S.Z., OAKES G.L. (1987): Inheritance of resistance to Fusarium crown and root rot in tomato. HortScience, **22**: 110–111.
- DI PRIMO P., CARTIA G., KATAN T. (2001): Vegetative compatibility and heterokaryon stability in *Fusarium oxysporum* f.sp. *radicis-lycopersici* from Italy. Plant Pathology, **50**: 371–382.
- FAZIO G., STEVENS M.R., SCOTT J.W. (1999): Identification of RAPD markers linked to Fusarium crown and root rot resistance (*Frl*) in tomato. Euphytica, **150**: 205–210.
- JARVIS W.R. (1988): *Fusarium* crown and root rot of tomatoes. Phytoprotection, **69**: 49–64.
- JONES J.B., JONES J.P., STALL R.E., ZITTER T.A. (1991): Compendium of Tomato Diseases. APS, St. Paul.
- Koike S.T., Gladders P., Paulus A.O. (2006): Vegetable Diseases: A Color Handbook. Academic Press, Elsevier, London.
- KOZIK E.U. (1999): Evaluation of two techniques for screening tomatoes for resistance to Fusarium crown and root rot. Vegetable Crops Research Bulletin, **50**: 5–11.

- McGovern R.J., Vavrina C.S., Noling J.W., Dantoff L.A., Yonce H.D. (1998): Evaluation of application methods of metam sodium for management of Fusarium crown and root rot in tomato in southwest Florida. Plant Disease, 82: 919–923.
- Ozbay N., Newman S. (2004): Fusarium crown and root rot of tomato and control methods. Plant Pathology Journal, 3: 9–18
- SONODA R.M. (1976): The occurrence of Fusarium root rot of tomatoes in South Florida. Plant Disease Reporter, **60**: 221–274
- STEINKELLNER S., MAMMERLER R., VIERHEILIG H. (2005): Microconidia germination of the tomato pathogen *Fusa-rium oxysporum* in the presence of root exudates. Journal of Plant Interactions, 1: 23–30.
- Tanyolac B., Akkale C. (2010): Screening of resistance genes to fusarium root rot and fusarium wilt diseases in F₃ family lines of tomato (*Lycopersicon esculentum*) using RAPD and CAPs markers. African Journal of Biotechnology, **9**: 2727–2730.
- TRUONG H.T.H., CHOI H., CHO M.Ch., LEE H.E. (2011): Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (*Frl*) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato. African Journal of Biotechnology, **10**: 1130–1136.
- VAKALOUNAKIS D.J. (1988): The genetic analysis of resistance to Fusarium crown and root rot of tomato. Plant Pathology, **37**: 71–73.
- VAKALOUNAKIS D.J., LATERROT H., MORETTI A., LIGOXI-GAKIS E.K., SMARDAS. K. (1997): Linkage between Frl (Fusarium oxysporum f.sp. radicis-lycopersici resistance) and Tm-2 (tobacco virus resistance -2) loci in tomato (Lycopersicon esculentum). Annals of Applied Biology, 130: 319–323.
- YAMAKAWA K., NAGATA N. (1975): Three tomato lines obtained by the use of chronic gamma radiation with combined resistance to TMV and fusarium race J-3. Technical News, Institute of Radiation Breeding, **16**: 2.

Received for publication March 21, 2014 Accepted after corrections September 29, 2014

Corresponding author:

Dr. MIROSŁAWA STANIASZEK, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Research Institute of Horticulture, 96-100 Skierniewice, Poland; e-mail: miroslawa.staniaszek@inhort.pl