Common Bunt Resistance of Czech and European Winter Wheat Cultivars and Breeder Lines

VERONIKA DUMALASOVÁ, LEONA LEIŠOVÁ-SVOBODOVÁ and PAVEL BARTOŠ

Department of Genetics and Plant Breeding Methods, Crop Research Institute,
Prague-Ruzyně, Czech Republic

Abstract

DUMALASOVÁ V., LEIŠOVÁ-SVOBODOVÁ L., BARTOŠ P. (2014): Common bunt resistance of Czech and European winter wheat cultivars and breeder lines. Czech J. Genet. Plant Breed., **50**: 201–207.

Winter wheat cultivars recently registered in the Czech Republic were tested in three-year field tests for resistance to common bunt. Seeds were inoculated with a mixture of local strains of *Tilletia tritici* and *T. laevis*. None of the cultivars displayed a higher level of resistance compared with the resistant checks. The mean percentage of bunted ears in the three test series including checks was 39%. Mean bunt infection in resistant and susceptible checks was 2% and 63%, respectively. In the European *Tilletia* cooperative test performed in Prague-Ruzyně, thirty-five winter wheat cultivars from six countries were tested during 2007–2013. The cultivars Bill, Nadro, Quebon, Samurai, Stava and Tommi exhibited infection levels below 10% in the respective years of the test. Additionally, 75 breeding lines from six countries were tested. Infection levels below 1% were recorded in 56% of the lines and 1–10% levels in 19% of the lines. A close relationship between the resistant cvs. Tommi and Globus was confirmed using SSR allelic markers.

Keywords: Bt genes; SSRs; Tilletia tritici; Tilletia laevis

Although the chemical treatment of wheat seed for the control of common bunt (*Tilletia tritici* /Bjerk./ Wint. and *T. laevis* /Kühn/) is widely used, genetic resistance of wheat is an important part of the bunt control in many countries, particularly on organic farms. Previous studies have demonstrated a low level of resistance to common bunt among cultivars registered in the Czech Republic (Dumalasová & Bartoš 2007, 2010). The present paper describes the bunt resistance of winter wheat cultivars registered in the years 2009–2011 and among European cultivars.

Microsatellite (SSRs) markers are widely used in plant breeding and genomic research (Guo et al. 2011; Mir et al. 2012; Son-Mezoglu et al. 2012; Simpfendorfer et al. 2013). Concerning the wheat variability analysis, Roussel et al. (2005) reported that a genetic distance exists between wheat cultivars from the western part of Europe (France, The Netherlands, Great Britain, Belgium, Germany) and those from northern and central European countries. An attempt to determine a relationship between bunt

resistant cultivars Tommi, Globus and Quebon based on SSR allelic diversity of west European cultivars is presented.

MATERIAL AND METHODS

Seed and inoculum. Seed of wheat cultivars registered in the Czech Republic was kindly supplied by the Central Institute for Supervising and Testing in Agriculture, Brno, http://www.ukzuz.cz/ (Table 1). Seed of the cultivars/lines tested in the European *Tilletia* cooperative tests was supplied by the cooperating institutions from Denmark, France, Finland, Germany, Lithuania, Romania, Switzerland and Ukraine (Table 2). The inoculum employed in all years was a mixture of Czech isolates of *T. tritici* and *T. laevis*. The ratio of *T. tritici* and *T. laevis* samples in the mixture was 1:1. Samples of *T. tritici* were obtained from Červený Újezd, Jičín, Kroměříž, samples of *T. laevis* from Kralovice, Prague-Ruzyně, Úhřetice and Kroměříž. A mixture of *T. tritici* and *T. laevis* samples was used

for inoculation in all experimental years. For inoculation, 0.1 g of teliospores was applied to 250 seeds. Seed and inoculum were shaken by hand in a glass flask for 1 min. The inoculum mixture was tested on controls consisting of lines/cultivars possessing resistance genes (Goates 1996) kindly supplied by Dr. B.J. Goates, USDA, Aberdeen, USA.

Field trials. Inoculated seed was sown in Prague-Ruzyně in October after the usual winter wheat sowing period. Each seed sample was sown in plots consisting of 1 m rows long, 0.2 m apart. There were four replications arranged in a randomized complete block design. Healthy and diseased ears were scored in July. The reaction to bunt was expressed as a percentage of all the spikes in the row exhibiting bunt. The known resistant checks Globus and Bill and the susceptible check Batis (Dumalasová & Bartoš 2007) were included in the tests of registered cultivars. In the European Tilletia cooperative tests only a susceptible check Batis was included. Registered cultivars were tested for three years, duration of the tests of cultivars/lines in the cooperative test varied (Table 2). Analysis of variance was employed to determine if statistical differences between treatment means were observed and Fisher's Least Significant Difference (LSD) was employed to separate means (UNISTAT 5.0 package, UNISTAT Ltd., London, UK).

Genetic diversity among cultivars. Thirty-seven bread wheat accessions, mostly from Germany, were

chosen from our database of simple sequence repeats (SSRs) of previously processed European cultivars to evaluate the probability of the same pedigree and the same resistance genes in cvs. Tommi, Globus and Quebon. Plants were grown in greenhouse conditions and about 30 plants per accession were pooled and frozen at -80°C. Genomic DNA was extracted using CTAB method according to the optimised protocol of SAGHAI-MAROOF et al. (1984). For genotyping, 42 microsatellite loci were selected (Roussel et al. 2004). PCR with fluorescently labelled primers (6-fam, vic, ned and pet) was performed in a reaction volume of 15 µl according to the optimised protocol. Reactions were run in the UNO II cycler (Biometra, Goettingen, Germany). Products of PCR reactions were separated using capillary electrophoresis on ABI PRISM 3130 (Applied Biosystems, Foster City, USA). A multiplexed configuration of four reactions was used in one analysis. LIZ500 (Applied Biosystems) was used as the internal size standard. Electrophoretograms were evaluated using the GeneMapper software (Applied Biosystems). For each locus, the presence or absence of bands in each size category was scored for all genotypes. Data were set in a binary matrix. The neighbour-joining cluster analysis based on the Jaccard dissimilarities computed from microsatellite analysis data was performed using the DARwin software (http://darwin.cirad.fr/darwin; Perrier & Jacquemoud-Collet 2006) to visualize

 $Table \ 1. \ Analysis \ of \ variance \ for \ common \ bunt \ in fection \ for \ the \ Czech \ cultivars \ evaluated \ in \ Prague-Ruzyne \ from \ 2009-2013$

Experimental series	Source of variability	Sum of squares	% variation	df	Mean square	<i>F</i> -value	<i>P</i> -value
	cultivar	60283.13	65.69	9	6698.13	53.31	< 0.001
	year	8005.24	8.72	2	4002.62	31.85	< 0.001
1 (2009–2011)	cultivar × year	12173.98	13.27	18	676.33	5.38	< 0.001
	error	11308.99	12.32	90	125.66		
	total	91771.33	100.00	119	771.19		
	cultivar	53989.87	57.14	15	3599.33	23.94	< 0.001
	year	3070.77	3.25	2	1535.38	10.21	< 0.001
2 (2010–2012)	cultivar × year	15768.88	16.69	30	525.63	3.50	< 0.001
	error	21654.59	22.92	144	150.38		
	total	94484.12	100.00	191	494.68		
	cultivar	64789.10	58.69	12	5399.09	64.22	< 0.001
	year	25728.31	23.31	2	12864.15	153.01	< 0.001
3 (2011–2013)	cultivar × year	10037.98	9.09	24	418.25	4.98	< 0.001
	error	9836.53	8.91	117	84.07		
	total	110391.91	100.00	155	712.21		

df - degree of freedom

the genetic distances among isolates. The robustness of the nodes in each tree was assessed through repeated bootstrap resampling 1000 times.

RESULTS

Bunt resistance of registered cultivars. Common bunt infection levels were significantly affected by genotypes and years (environments), and by genotypeby-environment interactions ($P \le 0.001$) (Table 1). Mean bunt infection levels in the susceptible check Batis was 67% in 2009, 70% in 2010, 63% in 2011, 42% in 2012 and 87% in 2013, suggesting that there was a sufficient disease pressure in all years of the study. Mean bunt infection in the inoculated, resistant checks was 2% suggesting that resistance in these cultivars could be expressed under the prevailing environmental conditions. None of the cultivars tested were as resistant as the checks Globus and Bill. In the first series of the trials (Table 2), cultivars Brilliant and Secese had less than a half of the bunt levels compared to the susceptible check cv. Batis. In the second series, cv. Iridium exhibited a similar level of resistance compared to cv. Batis. In the third series (Table 2), cv. Feria exhibited the lowest bunt infection levels; however there were no significant differences in bunt infection among the cultivars Feria, Matylda, Sorrial, Elan, Beduin and Potenzial (Table 2).

Data based on susceptibility of the differential lines to the race mixture were obtained in 2012 and 2013, respectively. The following infection with a mixture of Czech isolates, the % of infected ears was recorded: Bt0 - 37.4, 78.1; Bt1 - 15.0, 14.2; Bt2 - 35.6, 54.2; Bt3 - 17.5, 28.4; Bt4 - 0.8, 0.6; Bt5 - 0.9, 5.0; Bt6 - 0.0, 0.3; Bt7 - 19.2, 29.0; Bt8 - 0.0, 2.0; Bt9 - 0.0, 0.3; Bt10 - 0.0, 0.0; Bt11 - 0.0, 0.0 and Bt13 - 0.0, 0.0.

European *Tilletia* cooperative test. Of the tested cultivars, Bill, Nadro, Quebon, Samurai, Stava and Tommi exhibited the highest levels of resistance with bunt infection averaging below 10% (Table 3). All of the above-mentioned cultivars were tested only for one year with the exception of Bill and Quebon. Bill was tested for two years and had average bunt infection 7%. Quebon was tested for three years and had average bunt infection 1%. In the years 2007–2012 bunt infection on the susceptible check cv. Batis varied between 37% in 2008 and 87% in 2013.

Most of the breeding lines (Table 4) displayed high levels of bunt resistance. Infection levels below 1% were recorded in 56% of the tested lines and levels from 1 to 10% were observed in 19% of the tested lines. Only 25% of lines showed infection above

Table 2. Mean levels of common bunt infection observed in field trials at Prague-Ruzyně from 2009 to 2013

Exp.	Cultivar	Registration*	% bunted ears	
	Globus (check)	2003	2.7ª	
	Bill (check)	2002	3.3 ^a	
	Brilliant	2009	26.5^{b}	
$\widehat{\Box}$	Secese	2009	29.0^{b}	
1 (2009–2011	Manager	2007	36.5 ^{bc}	
	Hermann	2007	39.0^{bcd}	
500	Seladon	2009	$45.3^{\rm cd}$	
<u></u>	Bagou	Bagou 2009		
	Batis (check)	2001	$66.4^{\rm e}$	
	Federer	2009	74.2^{e}	
	mean		37.5	
	Bill (check)	2002	0.6 ^a	
	Globus (check)	2003	1.3^{a}	
	Iridium	2009	$25.4^{\rm b}$	
	Elly	2010	$38.7^{\rm c}$	
	Graindor	2010	38.7^{c}	
	Salutos	2009	39.3^{c}	
2	Bodyček	2010	$41.0^{\rm c}$	
2013	RW Nadal	2010	$42.6^{\rm cd}$	
<u></u>	Jindra	2010	$45.3^{\rm cde}$	
2 (2010–2012)	Fortis	2009	$45.3^{\rm cde}$	
2 (Henrik	2010	48.6^{cdef}	
	Brentano	2010	$48.7^{\rm cdef}$	
	Aladin	2010	54.8^{def}	
	Preciosa	2009	55.2^{ef}	
	Magister	2009	55.2^{ef}	
	Batis (check)	2001	58.3^{f}	
	mean		39.9	
	Globus (check)	2003	1.2^{a}	
	Bill (check)	2002	2.7^{a}	
	Feria	2011	35.2^{b}	
	Matylda	2011	38.1^{b}	
	Sorrial	not registered	38.7^{b}	
113)	Elan	2012	38.7^{b}	
3 (2011–2013)	Beduin	2011	39.7^{b}	
011	Potenzial	2012	42.6^{b}	
3 (2	Carroll	2011	59.1°	
	Altigo	2011	61.0^{c}	
	Batis (check)	2001	63.9°	
	JB Asano	2012	63.9°	
	Athlon	2013	64.1°	
	mean		42.2	

Means in columns followed by the same letter are not significantly different from each other (LSD, P < 0.05); Exp. – experimental series; *year of registration in the Czech Republic

Table 3. Common bunt infection levels in the European Tilletia cooperative test conducted at Prague-Ruzyně from 2007 to 2013

Cultivar	Supplied from	% bunted ears (year)
Arolla	СН	40.3 (2007)
Batis	CZ	59.1 (2007); 37.2 (2008); 66.5 (2009); 66.9 (2010); 63.1 (2011); 42.2 (2012); 86.5 (2013)
Bill	CZ	7.9 (2007); 6.0 (2008)
Butaro	DE	25.4 (2009)
Camedo	СН	45.9 (2009)
Claro	СН	11.2 (2008); 21.5 (2009); 44.7 (2011)
Delloro	СН	14.2 (2008)
Forel	СН	40.4 (2007); 36.3 (2009)
Greina	СН	51.8 (2012)
Hanswin	СН	43.3 (2013)
Haven	СН	26.6 (2013)
Chaumont	СН	66.1 (2013)
Levis	СН	3.7 (2008); 34.8 (2010)
Lona	СН	58.7 (2012)
Lorenzo	СН	19.5 (2012)
Molinera	СН	22.5 (2011); 61.5 (2013)
Nadro	СН	8.0 (2012)
Nara	СН	21.3 (2009)
Quebon	FR	1.6 (2007); 1.2 (2008); 1.1 (2013)
Rehti	FI	12.7 (2007)
Runal	СН	19.7 (2008); 41.5 (2011); 42.5 (2012)
Samurai	СН	4.2 (2008)
Sankara	FR	28.9 (2007)
Sertori	СН	62.1 (2010); 23.2 (2012)
Siala	СН	38.8 (2007); 30.6 (2009); 53.3 (2010)
Skagen	DK	15.1 (2007); 9.2 (2008)
Solution	FR	15.8 (2009)
Stava	DK	0.0 (2007)
Suretta	СН	41.7 (2011); 9.6 (2012); 41.2 (2013)
Tambor	DE	15.8 (2007)
Titlis	СН	43.8 (2007); 15.0 (2011); 7.6 (2012)
Togano	СН	19.9 (2010); 0.0 (2012); 44.1 (2013)
Tommi	DK	7.2 (2007)
Torrild	DK	12.8 (2007)
Urho	FI	34.6 (2007)
Zinal	CH	38.8 (2007); 11.3 (2008); 56.2 2010)

 $\label{eq:decomposition} DE-Germany; DK-Denmark; CH-Switzerland; FR-France; CZ-Czech Republic; FI-Finland$

10%. Resistance was evident among lines from all six participating countries. The genetic nature of the resistance is unknown but based on infection results of lines inoculated with inoculum with known virulence, it is unlikely to be connected with the presence of *Bt1*, *Bt2*, *Bt3* and *Bt7*.

Genetic diversity using SSR markers. Quebon, Tommi and Globus originated from the same plant breeding company Nordsaat Saatzucht GmbH (Germany). For this reason we tried to establish the relationship between these three bunt resistant cultivars using SSR markers. Results (Figure 1) confirmed a

Table 4. Common bunt infection levels among breeding lines entered in the European Tilletia cooperative test conducted at Prague-Ruzyně from 2007 to 2013

	Year _	No. of tested lines				
Origin		%	4-4-1			
		< 1	1-10	> 10	total	
	2007	2	1	4	7	
	2008	8	_	1	9	
DE	2009	4	1	1	6	
	2010	6	_	1	7	
	2011	5	_	_	5	
	2012	_	3	2	5	
	2013	1	4	1	6	
UA	2007	4	_	1	5	
	2008	5	1	_	6	
	2009	3	_	_	3	
DK	2007	1	_	_	1	
	2008	1	_	_	1	
RO	2009	1	2	_	3	
LT	2009	_	1	6	7	
СН	2009	1	1	2	4	
Σ		42	14	19	75	
%		56.0	18.7	25.3	100	

DE – Germany; DK – Denmark; CH – Switzerland; LT – Lithuania; RO – Romania; UA – Ukraine

close relation of Tommi and Globus and a distant relationship between these two cultivars and Quebon.

DISCUSSION

Among the winter wheat cultivars recently registered in the Czech Republic, none was resistant to common bunt. Although the Danish cv. Bill is considered resistant, with infection levels below 10% during 7 years of our experiments, it was deregistered in 2012. Cv. Bill originates from a multiple cross 891088, double haploid (http://genbank.vurv. cz/genetic/resources/). The bunt resistance of cv. Bill was previously reported (BORUM 2001, cit. after Fischer et al 2002; Váňová et al. 2006). Liatukas and Ruzgas (2007, 2008) recorded the bunt infection of 10–22% and 9% on the cv. Bill in 2007 and 2008, respectively. Collectively, the results demonstrate that the resistance expression in cv. Bill varies considerably across environments. Different proportions of virulent races in the composite mixture used in individual tests may also account for variation in the resistance reactions.

The only registered common bunt resistant cultivar at present is Globus, which was shown to be resistant to bunt strains originating from Czech Republic and Germany in 2006–2007. During 2006, maximum levels of 2% bunt were observed following

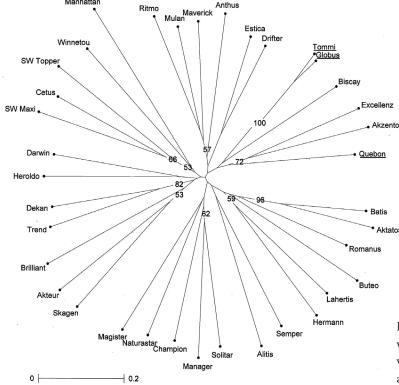


Figure 1. Relationship between European wheat cultivars based on SSR allelic diversity using neighbour-joining cluster analysis on the Jaccard dissimilarities

inoculation with the bunt strain from Berlin-Dahlem (Dumalasová & Bartoš 2007). Bunt infection levels in the cv. Globus of 3% or less have been reported (Huber & Buerstmayr 2006; Liatukas & Ruzgas 2008; FONTAINE et al. 2009). Globus was also resistant in a 2004/2005 trial at Pfaffenwald (Germany) (Dr. H. Spiess, personal communication). However, when bunted ears from the cv. Globus were used as inoculum in 2007 and the average bunt incidence was higher, a susceptible reaction of 25% infection was observed on Globus (Dumalasová & Bartoš 2007). This suggests that races virulent on Globus may be present in Europe. Cv. Globus originates from the cross Ralf/Astron//Haven (O. UNGER, personal communication). Cvs. Astron and Haven are susceptible to common bunt (Dumalasová & Bartoš 2006; Dumalasová, unpublished results). The resistance level in cv. Ralf remains to be established.

The present study has identified cultivars that are resistant to the virulence spectra of the bunt inoculum used in our trials. In a different test (Du-MALASOVÁ, unpublished results), registered cultivars such as cv. Alibaba and lines possessing Bt2 (Sel. 1102) and Bt3 (Ridit) were resistant following inoculation with strains originating from Kroměříž but were susceptible to the inoculum from the Czech Republic. This suggests that cv. Alibaba possesses resistance genes Bt2 and/or Bt3 that are ineffective in our present trials. Similar results were reported by Dumalasová and Bartoš (2006) regarding German cultivars Euris and Bussard that were resistant to T. tritici from Kroměříž but susceptible to T. laevis from Prague-Ruzyně. The European Tilletia cooperative test from all cooperating institutions is not generally published so it is not possible to determine if resistance is effective against all prevalent European races. Fontaine et al. (2009), who presented partial results from six locations in Europe in 2007, demonstrated that cv. Quebon was resistant at all locations except Romania where it was susceptible to one of the three bunt strains tested. The ancestry of cv. Quebon is unknown. These results suggest that variability in the virulence spectra among common bunt strains occurs across Europe and that widespread testing over years should be done prior to selecting resistance sources for incorporation into breeding programs. Cv. Tommi, tested in Germany with common bunt proveniences originating from five locations (WÄCHTER et al. 2007), was included in the group with the lowest bunt infection levels that ranged from 0 to 2%. German cvs Fakir and Zeppelin possessing cv. Tommi in their pedigrees were recently registered in the Czech Republic and are currently being evaluated for bunt resistance.

Breeding for common bunt resistance has resulted in the release of the resistant cultivars Tjelvar and Stava in Sweden (Jönsson 1991). Resistant European cultivars originating from Germany, Romania, Switzerland and Ukraine have been reported (Bänziger et al. 2003; Wächter et al. 2005; Dumalasová & Bartoš 2006). Though no resistance was found in cultivars recently registered in the Czech Republic, the results of the present study indicate that there is excellent resistance in European wheat cultivars available for incorporation. Variability in virulence among bunt strains originating from across Europe must also be considered in resistance breeding programs because of their potential introduction into the Czech Republic.

Acknowledgements. We thank Dr. V. Šíp for critical reading of our manuscript and invaluable comments. Participation in the cooperative test of Ms. O. Babayants (UA), Ms. M. Ittu (RO), Ms. M. Jalli (FI), Mr. P. Du Cheyron (FR), Mr. S. Klause (DE), Mr. P. Kunz (CH), Mr. Ž. Liatukas (LT), Mr. F. Mascher-Frutschi (CH), Mr. B.J. Nielsen (DK), Mr. W. Sannenmann (DE), Mr. H. Spiess (DE) and Mr. M. Timmermann (DE) was highly acknowledged. The research was supported by Ministry of Agriculture of the Czech Republic, Projects No. MZE 0002700604 and No. QJ1210189.

References

Bänziger I., Forrer H.-R., Schachermayr G. (2003): Stinkbrandanfälligkeit in- und ausländischer Weizensorten. Agrarforschung, 10: 328–333.

Dumalasová V., Bartoš P. (2006): Resistance of winter wheat cultivars to common bunt, *Tilletia tritici* (Bjerk.) Wint. and *T. laevis* Kühn. Zeitschricht für Pflanzenkrankheiten und Pflanzenschutz – Journal of Plant Diseases and Protection, **113**: 159–163.

Dumalasová V., Bartoš P. (2007): Reaction of winter wheat cultivars to common bunt *Tilletia tritici* (Bjerk.) Wint. and *T. laevis* Kühn. Plant Protection Science, **43**: 138–141.

Dumalasová V., Bartoš P. (2010): Reaction of wheat, alternative wheat and triticale cultivars to common bunt. Czech Journal of Genetics and Plant Breeding, **46**: 14–20.

FISCHER K., SCHÖN C.C., MIEDANER T. (2002): Chancen der Resistenzzüchtung gegen Brandpilze bei Weizen für den ökologischen Pflanzenbau. Universität Hohenheim, Stuttgart-Hohenheim.

FONTAINE L., DU CHEYRON P., MORAND P., SKIKERS S. (2009): Assessing varietal resistances to control com-

- mon wheat bunt under organic cereal production and soft wheat, in particular. Innovations Agronomiques, 4: 513–518. (in French)
- GOATES B.J. (1996): Common bunt and dwarf bunt. In: WILCOXSON R.D., SAARI E.E. (eds): Bunt and Smut Diseases of Wheat: Concepts and Methods of Disease Management, CIMMYT, Mexico, 12–25.
- Guo X., Gao A., Liu W., Yang X., Li X., Li L. (2011): Evaluation of genetic diversity, population structure, and linkage disequilibrium among elite Chinese wheat (*Triticum aestivum* L.) cultivars. Australian Journal of Crop Science, 5: 1167–1172.
- Huber K., Buerstmayr H. (2006): Development of methods for bunt resistance breeding for organic farming. Czech Journal of Genetics and Plant Breeding, **42** (Special Issue): 66–71.
- Jönsson J.Ö. (1991): Wheat breeding against facultative pathogens. Sveriges Utsädesförenings Tidskrift, **101**: 89–93.
- LIATUKAS Ž., RUZGAS V. (2007): The effect of alien translocations on winter wheat resistance to *Tilletia tritici* (DC.) Tul. Biologija (Lithuania), **53**: 59–62.
- LIATUKAS Ž., RUZGAS V. (2008): Common bunt (*Tilletia tritici* (Bjerk.) resistance of winter wheat varieties included and investigated for inclusion into the Lithuanian National List of Plant Varieties. Agricultural Sciences, **15**: 25–31. (in Lithuanian)
- MIR R.R., KUMAR J., BALYAN H.S., GUPTA P.K. (2012): A study of genetic diversity among Indian bread wheat (*Triticum aestivum* L.) cultivars released during last 100 years. Genetic Resources and Crop Evolution, **59**: 717–726.
- Perrier X., Jacquemoud-Collet J.P. (2006): DARwin software. Available at http://darwin.cirad.fr/darwin
- ROUSSEL V., KOENIG J., BECKERT M., BALFOURIER F. (2004): Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theoretical and Applied Genetics, **108**: 920–930.

- ROUSSEL V., LEIŠOVA L., EXBRAYAT F., STEHNO Z., BAL-FOURIER F. (2005): SSR allelic diversity changes in 480 European bread wheat varieteis released from 1840 to 2000. Theoretical and Applied Genetics, **111**: 162–170.
- SAGHAI-MAROOF M.A., SOLIMAN K.M., JORGENSEN R.A., ALLARD R.W. (1984): Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81: 8014–8018.
- SIMPFENDORFER S., MARTIN A., SUTHERLAND M.W. (2013): Use of SSR markers to determine the genetic purity of a popular Australian wheat variety and consequences for stripe rust reactions. Seed Science and Technology, **41**: 98–106.
- Sonmezoglu Ates O., Bozmaz B., Yildirim A., Kandemir N., Aydin N. (2012): Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters. Turkish Journal of Biology, **36**: 589–597.
- Váňová M., Matušinský P., Benada J. (2006): Survey of incidence of bunts (*Tilletia caries* and *Tilletia controversa*) in the Czech Republic and susceptibility of winter wheat cultivars. Plant Protection Science, **42**: 21–25.
- Wächter R., Wolf G., Koch E. (2005): Charakterisierung der Resistenz von Winterweizensorten gegenüber Steinbrand (Tilletia caries). In: 8. Wissenschaftstagung Ökologischer Landbau. Kassel University Press, Kassel, 121–124.
- WÄCHTER R., WALDOW F., MÜLLER K.J., SPIESS H., HEY-DEN B., FURTH U., FRAHM J., WENG W., MIEDANER T., STEPHAN D., KOCH E. (2007): Charakterisierung der Resistenz von Winterweizensorten und -zuchtlinien gegenüber Steinbrand (*Tilletia tritici*) und Zwergsteinbrand (*T. controversa*). Nachrichtenblatt für den deutschen Pflanzenschutzdienst, **59**: 30–39.

Received for publication December 2, 2013 Accepted after corrections July 2, 2014

Corresponding author:

RNDr. Veronika Dumalasová, Ph.D., Výzkumný ústav rostlinné výroby, v.v.i., Drnovská 507, 161 06 Praha 6-Ruzyně, Česká republika; e-mail: dumalasova@vurv.cz