# **SHORT COMMUNICATION**

# Detection of Genetic Relationships among Spring and Winter Triticale (× Triticosecale Witt.) and Rye Cultivars (Secale cereale L.) by Using Retrotransposon-based Markers

Andrej TREBICHALSKÝ<sup>1</sup>, Ruslan KALENDAR<sup>2</sup>, Alan SCHULMAN<sup>2</sup>, Olga STRATULA<sup>3</sup>, Zdenka GÁLOVÁ<sup>1,4</sup>, Želmíra BALÁŽOVA<sup>1</sup> and Milan CHŇAPEK<sup>1</sup>

<sup>1</sup>Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic; <sup>2</sup>Institute of Biotechnology, MTT/BI Plant Genomics Lab, University of Helsinki, Helsinki, Finland; <sup>3</sup>Plant Breeding and Genetics Institute, Odessa, Ukraine; <sup>4</sup>Centre of Excellence for White-green Biotechnology, Chemical Institute SAV, Nitra, Slovak Republic

#### Abstract

Trebichalský A., Kalendar R., Schulman A., Stratula O., Gálová Z., Balážová Ž., Chňapek M. (2013): **Detection of genetic relationships among spring and winter triticale** (\* *Triticosecale* Witt.) **and rye cultivars** (*Secale cereale* L.) **by using retrotransposon-based markers**. Czech J. Genet. Plant Breed., **49**: 171–174.

In the present research, we aimed to detect and evaluate the level of long terminal repeat (LTR) retrotransposons (WIS2, Wilma, Daniela, and Wham) intraspecific variability and intron polymorphism for  $\beta$ -amylase (BAMY) genes in 37 winter and 25 spring triticale cultivars coming from European countries and the USA and 5 Finnish rye cultivars. The triticale and rye genotypes differ significantly with respect to the patterns of the four explored LTR retrotransposons. A neighbour-joining dendrogram has separated all triticale and rye cultivars into three principal clusters: all winter triticale, all spring triticale and all rye cultivars. We have proved that retrotransposon-based markers can be used for differentiation of triticale and rye cultivars.

**Keywords**: β-amylase (BAMY) genes; long terminal repeat (LTR) genes; genetic diversity; molecular markers; rye; triticale

Triticale (× *Triticosecale* Witt.) is a cereal bred by the crossing of wheat and rye. It has the potential to introduce important economic and environmental benefits to grain production systems. Triticale is a high-quality feedstuff and produces a similar grain yield like other cereal crops, but more biomass, and can cope with a wide range of abiotic stress condi-

tions (Alheit *et al.* 2011). Molecular markers are essential in plant and animal breeding and biodiversity applications, and for the map-based cloning of genes (Kalendar *et al.* 2011). Retrotransposons are widely distributed in higher plants, and make up a large fraction of the genome; in wheat 90% of the genome consists of retrotransposons. Several

studies for detection of genetic diversity in plants by retrotransposon-based markers have been reported (Žiarovská et al. 2009; Kalendar 2011). Molecular marker techniques such as SSAP (Sequence-Specific Amplification Polymorphism) and the related IRAP (Inter-Retrotransposons Amplified Polymorphism) and the REMAP (Retrotransposon-Microsatellite Amplified Polymorphism) are based on retrotransposon activity, and are widely used today. The IRAP technique examines the polymorphism of retrotransposons themselves (Todorovska 2007) and largely confirmed absence of any intraspecific variation in wheat, rye and triticale (Bento et al. 2008). SMÝKAL (2006) mentioned as the major advantage of IRAP (over the other methods used in pea) the high information content gained per single PCR analysis, which substantially cuts time and cost. The representatives of the Triticeae (wheat, barley and rye) have two distinct forms of  $\beta$ -amylase (BAMY) genes which differ in their expression patterns; one form is specific to the endosperm, while the other has a tissue-ubiquitous pattern of expression (ZIE-GLER 1999). The aim of our study was to identify the degree of genetic diversity between winter and spring cultivars of triticale from different European countries and the USA and Finnish rye cultivars based on retrotransposon-based markers and exonprimed intron-crossing PCR amplification (EPIC) for grass BAMY genes.

Sixty-two triticale cultivars (× *Triticosecale* Witt.) were provided by the Gene Bank of the Slovak Republic in Piešťany. The varieties come from different European countries and some of them from the USA. The five rye varieties were provided by MTT Agrifood Research Finland (Jokioinen). Genomic DNA was manually isolated using the standard CTAB method (DOYLE & DOYLE 1990) with RNAse A treatment. The sequences of four wheat transposable elements (WIS2, Wilma, Daniela, and Wham) were taken from the TREP da-

tabase (http://wheat.pw.usda.gov/ggpages/ITMI/ Repeats/). Primers (Table 1) for the conserved segments of the long terminal repeat (LTR) and BAMY genes were designed using FastPCR (KALENDAR et al. 2011). IRAP analysis was conducted according to Kalendar and Schulman (2006). The PCR was performed in a 25 µl reaction mixture containing 25 ng DNA, 1× BioTools buffer, 0.5μM primer, 200µM dNTP, and 1U BioTools polymerase (Biotools, B&M Labs, Madrid, Spain). The PCR program consisted of 1 cycle at 95°C for 3 min; 32 cycles at 95°C for 30 s and at 60°C for 1 min and at 72°C for 2 min; and a final extension step of 72°C for 5 min. PCR amplification was performed in a 25 µl reaction mixture containing 25 ng DNA, 1× BioTools buffer, 0.3μM each primers, 200μM dNTP and 1U BioTools polymerase. The PCR program consisted of 1 cycle at 95°C for 3 min; 32 cycles at 95°C for 20 s and at 68°C for 1 min and at 72°C for 3 min; and a final extension step of 72°C for 5 min. Amplifications were performed in a thermocycler (Biometra GmbH, Goettingen, Germany) in 0.2 ml tubes. The PCR products were resolved by electrophoresis on 1.5% agarose stained with ethidium bromide during 12-16 h at 50–60 V. Each band was treated as a single locus. The presence or absence of a fragment of a given length was recorded in binary code. Based on NJ (Neighbour-Joining) algorithm using PAUP software (SWOFFORD 1998) a dendrogram was constructed (Figure 1). Diversity index (DI), probability of identity (PI) and polymorphism information contents (PIC) were calculated according to Russel et al. (1997).

A high level of genetic diversity among the winter and spring triticale cultivars from different European countries and the USA and Finnish rye cultivars was revealed by IRAP analysis and EPIC PCR amplification for BAMY genes. Rye served as a comparative system for detection of common or

Table 1. The list of used long terminal repeat (LTR) retrotransposons and β-amylase (BAMY) primers

| Name | LTR retrotransposon source | Sequence                  | Temperature (°C) |  |
|------|----------------------------|---------------------------|------------------|--|
| 2106 | Wis2                       | TAATTTCTGCAACGTTCCCCAACA  | 57.1             |  |
| 2107 | Wilma                      | AGCATGATGCAAAATGGACGTATCA | 56.8             |  |
| 2108 | Wilma                      | AGAGCCTTCTGCTCCTCGTTGGGT  | 63.4             |  |
| 2109 | Daniela                    | TACCCCTACTTTAGTACACCGACA  | 56.0             |  |
| 2123 | Wham                       | GGAAAAGTAGATACGACGGAGACGT | 57.9             |  |
| 3162 | BAMY                       | TCCAAGTCTACGTCATGCTCC     | 56.4             |  |
| 3816 | BAMY                       | GCTGCTGCTTTGAAGTCTGCT     | 62.3             |  |

| Table 2  | The statistical | characteristics. | of the | markers | used in triticale  |
|----------|-----------------|------------------|--------|---------|--------------------|
| Table 2. | THE Statistical | Characteristics  | or the | markers | used iii tiiticale |

| Duine au(a)    | DI     |        | PIC   |        | PI     |       |        | No. of poly- |       |                  |
|----------------|--------|--------|-------|--------|--------|-------|--------|--------------|-------|------------------|
| Primer(s)      | winter | spring | rye   | winter | spring | rye   | winter | spring       | rye   | morphic<br>bands |
| 2106 (Wis2)    | 0.613  | 0.854  | 0.874 | 0.538  | 0.848  | 0.870 | 0.218  | 0.003        | 0.002 | 15               |
| 2107 (Wilma)   | 0.847  | 0.709  | 0.851 | 0.843  | 0.678  | 0.845 | 0.005  | 0.092        | 0.015 | 12               |
| 2108 (Wilma)   | 0.879  | 0.859  | 0.886 | 0.876  | 0.855  | 0.884 | 0.002  | 0.012        | 0.002 | 21               |
| 2109 (Daniela) | 0.841  | 0.894  | 0.855 | 0.834  | 0.893  | 0.851 | 0.005  | 0.001        | 0.004 | 17               |
| 2123 (Wham)    | _      | 0.859  | 0.831 | _      | 0.855  | 0.823 | _      | 0.003        | 0.022 | 12               |
| BAMY gene      | 0.818  | 0.885  | 0.741 | 0.816  | 0.882  | 0.710 | 0.008  | 0.002        | 0.086 | 8                |
| Average        | 0.799  | 0.844  | 0.840 | 0.781  | 0.835  | 0.831 | 0.048  | 0.019        | 0.022 | 14.2             |

 $DI-diversity\ index;\ PIC-polymorphism\ information\ content;\ PI-probability\ of\ identity;\ BAMY-\beta-amylase$ 

different bands with triticale cultivars. In triticale and rye, IRAP provided from 12 to 21 polymorphic bands with an average of 15.4 polymorphic bands per primer (Table 2). The frequencies of alleles and the values of DI, PI and PIC were calculated (Table 2). The average PIC and DI values in spring triticale were higher than in winter triticale and rye. DI values for all markers were higher than 0.6, which is generally considered sufficient for this purpose. The average PI values of spring and winter triticale, and rye were low (0.019, 0.048 and 0.022, respectively) and reflect a possibility of differentiating genetically close genotypes. We confirmed that the IRAP technique used was an appropriate way to differentiate between triticale and rye genotypes. The BAMY genes have shown similar results like IRAP markers. The average PIC and DI values of the tested sets of retrotransposon-based markers were higher compared to the average PIC (0.743) and DI (0.750) values obtained by 5 microsatellite SSR markers (Trebichalský et al. 2013). VYHNÁNEK et al. (2009) used 48 SSR markers in the study of genetic variability in 16 genotypes of triticale and their average PIC (0.48) and DI (0.52) were lower and PI was higher (0.31) compared to the values of our retrotransposon-based markers. The dendrogram separated all the cultivars in three principal clusters (Figure 1). Whereas the first cluster comprised 37 winter triticale cultivars (marked in blue), the second cluster included 25 spring triticale cultivars (marked in red) and all five rye cultivars (marked in green) were separated in the third cluster. The first cluster was further subdivided into many smaller groups. American cultivar NE 422T and Hungarian cultivar Tatra were significantly separated from all other winter triticale cultivars. In the sub-cluster of winter

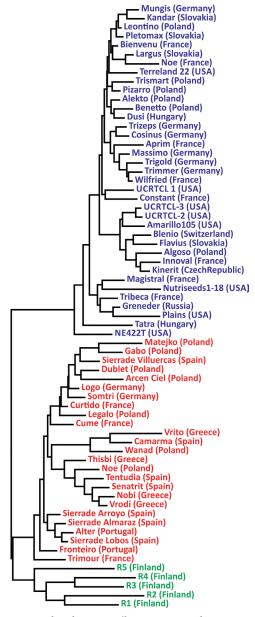



Figure 1. NJ dendrogram (bootstrap replications 1000) for triticale and rye genotypes based on IRAP analysis

triticale cultivars there were many sub-clusters, but the closest genetic relationship was shown by American varieties UCRTLC-2 and UCRTLC-3. The second largest sub-cluster contained spring triticale cultivars. As far as the first cluster is concerned, spring triticale cultivars grouped in many different sub-clusters. Also in the second cluster French cultivar Trimour and Portuguese cultivar Fronteiro separated from other cultivars. The closest genetic relationships were detected between Portuguese cultivar Alter and Spanish cultivar Sierra de Lobos and also between two Greek cultivars Niobi and Vrodi. TREBICHALSKÝ et al. (2013) used 5 SSR markers for detection of genetic polymorphism in 59 triticale cultivars. A constructed dendrogram separated genotypes into two clusters, but the used set of markers was not able to separate 10 cultivars between each other.

It was found that the used retrotransposon-based markers provided enough polymorphism. All cultivars examined were separated from each other. A constructed NJ dendrogram separated all samples into three main clusters: for all winter triticale, for all spring triticale and all rye cultivars. Taking into account all the results (PIC, DI, PI and dendrogram features), we can confirm that this technique of retrotransposon-based markers is highly efficient and a fast way to detect genetic variability between triticale genetically related genotypes.

Acknowledgements. This contribution is the result of the project: Centre of Excellence for White-Green Biotechnology, ITMS 26220120054, supported by the Research & Development Operational Programme funded by the ERDF (50%) and KEGA Project 034SPU-4/2012 (50%). Samples were provided thanks to the support within Research & Development Operational Programme for the Project: "Transfer, use and dissemination of research results of plant genetic resources for food and agriculture" (ITMS: 26220220058), cofinanced from the resources of the ERDF.

### References

ALHEIT K.V., REIF J.C., MAURER H.P., HAHN V., WEISSMANN E.A., MIEDANER T., WURSCHUM T. (2011): Detection of segregation distortion loci in triticale (× *Triticosecale* 

Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics, 12: 380.

Bento M., Pereira H.S., Rocheta M., Gustafson P., Viegas W., Silva M. (2008): Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLOS ONE, **3**: e1402.

DOYLE J.J, DOYLE J.L. (1990): Isolation of plant DNA from fresh tissue. Focus, **12**: 13–15.

Kalendar R. (2011): The use of retrotransposon-based molecular markers to analyse genetic diversity. Ratarstvo i povrtarstvo/Field and Vegetable Crops Research, **48**: 261–274.

KALENDAR R., SCHULMANA. H. (2006): IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols, 1: 2478–2484.

KALENDAR R., FLAVELL A.J., ELLIS T.H., SJAKSTE T., MOISY C., SCHULMAN A.H. (2011): Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, **106**: 520–530.

Russell J., Fuller J., Young G., Thomas B., Taramino G., Macaulay M., Waugh R., Powell W. (1997): Discriminating between barley genotypes using microsatellite markers. Genome, **40**: 442–450.

SMÝKAL P. (2006): Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. Journal of Applied Genetics, **47**: 221–230. SWOFFORD D.L. (1998): PAUP\*. Phylogenetic Analysis Using Parsimony (\*and Other Methods). Sinauer Associates, Sunderland.

Todorovska E. (2007): Retrotransposons and their role in plant-genome evolution. Biotechnology & Biotechnological Equipment, **2**: 294–305.

Trebichalský A., Balážová Ž., Gálová Z., Chňapek M., Tomka M. (2013): Detection of genetic diversity of triticale by microsatellite markers. Journal of Microbiology, Biotechnology and Food Sciences, **2**: 1898–1906.

Vyhnánek T., Nevrtalová E., Slezáková K. (2009): Detection of the genetic variability of triticale using wheat and rye SSR markers. Cereal Research Communications, **37**: 23–29.

ZIEGLER P. (1999): Cereal Beta-Amylases. Journal of Cereal Science, **29**: 195–204.

ŽIAROVSKÁ J., BAČOVÁ N., RAŽNÁ K., BEŽO M. (2009): Efficiency of flax (*Linum usitatissimum* L.) germplasm evaluation based on IRAP and REMAP using retrotransposon primers derived from different genera. Acta fytotechnica et zootechnica, **12**: 701–711.

Received for publication March 7, 2013 Accepted after corrections September 5, 2013

## Corresponding author:

Mgr. ŽELMÍRA BALÁŽOVÁ, PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 12 Nitra, Slovak Republic e-mail: zelmira.balazova@uniag.sk