
154 Proc. 5th International Triticeae Symposium, Prague, June 6–10, 2005

Czech J. Genet. Plant Breed., 41, 2005 (Special Issue)

Starch is an α-glucan, it serves as source of energy 
for plant itself, but also for potential consumers. 
There are two types of starch found in mature 
grains, amylose and amylopectin. Amylose contains 
up to several thousand of α-glucosyl units linked 
almost exclusively in α(1 → 4) linkage with very 
few branches of α(1 → 6) linkage. Amylose accounts 
for 30% of starch. Amylopectin, on the other hand 
is a much more branched molecule and contains up 
to several million glucosyl residues. Amylopectin 
accounts for 70% of starch (E������� 2004). 

Starch is synthesized in plastids, including chlo-
roplasts in photosynthetic tissues and amyloplasts 
in non-photosynthetic tissues such as seeds and 
roots (V������ & N������� 2000). Starch syn-
thesized in chloroplasts of photosynthetic tissues 
is degraded to hexoses during the dark period. 
Biosynthetic pathway starts with Calvin cycle. 

Polymerisation of glucosyl molecules is catalysed 
by soluble and granule bound starch synthases. 
Four basic types of soluble starch synthases (SS) 
are recognized: SSI (B��� et al. 1993; K����� et al. 
1998), SSII (D�� et al. 1992; E������ et al. 1999; 
H��� et al. 1998) SSIII (A��� et al. 1996; M������� 
et al. 1996; G�� et al. 1998), SSIV (D��� et al. 2005) 
and two classes of granule bound starch synthases 
(GBSS): GBSSI and GBSSII (K������� et al. 1986; 
O������ 1992).

GBSSI is exclusively located in the starch granules 
and cannot be detected in soluble extracts.

GBSSI or Waxy is responsible for amylose bio-
synthesis. In Triticeae, GBSSI is encoded by a single 
copy gene per genome. 

Reduction or loss of GBSSI function results in 
starch with a decreased or absent amylose frac-
tion, which is desired for its improved freeze-thaw 
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stability and resistance to staling compared to 
conventional starch. Allelic series of variants in the 
granule-bound starch synthase I gene in hexaploid 
and tetraploid wheat have been identified. Many 
partial sequences have been published and used 
for genetic resources evaluation (M���� et al. 1999; 
Y�� et al. 2000).

The search for natural knock-out alleles of GBSSI 
in bread wheat is complicated by the presence of 
A, B, and D genomes in allohexaploid bread wheat 
and A and B genomes in tetraploid pasta wheat. 
GBSSI is encoded by a locus found on the 7A and 
7D homoeologous chromosomes, and, due to a 
trans- location, on the 4A chromosome. 

MATERIAL AND METHODS

Plant material. Several Gene bank accessions 
were used. They belonged to Elytrigia pycnantha 
(Godron) Love, Thinopyrum junceum, Aegilops tauschii, 
Ae. cylindrica, Ae. geniculata, Ae. speltoides, Triticum 
urartu, T. monoccoccum, T. boeoticum, T. boeoticum, 
T. araraticum (wild form of T. timopheevi, 2n = 28, 
AAGG), and T. dicoccoides. Two cultivars of hex-
aploid wheat (T. aestivum L.), Stepowa (obsolete 
old cultivar from Poland) and Nela (Czech modern 
cultivar registered at 1998) were used as a control 
material. 

DNA isolation. DNA was isolated from (1) indi-
vidual plants and (2) bulked plants using 10 plants 
per accession in both cases. Protocol based on 
selective precipitation in CTAB as described by 
S�����-M����� (1984) was used. DNA quality and 
quantity were measure spectrophotometrically and 
electrophoretically. 

Primer designing. DNA sequence No. AB019624 
(NCBI database) was used to design two primer 
pairs for waxy gene amplification with the help 
of PRIMER3 program to cover whole genomic se-
quence. Final primer sequences were as follows: 

M1 Forward: 5'-GCCGTCAACTACGACATCACCA-3 

M1 Reverse: 5'-CTCGACACCCAGTTCCAGAAGC-3

M2 Forward: 5'-GCTCTGGTCACGTCCCAGCT-3

M2 Reverse: 5'-TGGTGATGTCGTAGT TGACGGC-3

Reaction optimisation. For both primer pairs 
reaction profiles and reaction mix composition 
were optimised. Proofreading polymerase Pro-
mega Taq DNA Polymerase was used for primer 
pair M1. Reaction mixture consisted of 9.3 µl H2O,  
1.5 µl Promega buffer, 1 µl 25mM Mg2+, 1 µl 10mM 

dNTPs, 0.5 µl 5µM forward primer, 0.5 µl 5µM 
reverse primer, 0.2 µl Promega Taq polymerase 
and 1 µl template DNA, reaction profile: initial 
denaturation (94°C, 2 min), denaturation (94°C, 
30 s), annealing (60°C, 40 s), extension (72°C, 1 min), 
final extension (72°C, 10 min), 35 times from de-
naturation to extension.

Proofreading polymerase Phusion High-Fidel-
ity DNA Polymerase was used for primer pair 
M2. Reaction mixture consisted of 14.75 µl H2O, 
5 µl Phusion HF buffer, 0.25 µl 25mM Mg2+, 0.5 µl 
10mM dNTPs, 1.25 µl 5µM forward primer, 1.25 µl 
5µM reverse primer, 0.75 µl DMSO, 0.25 µl Phu-
sion polymerase and 1 µl templateDNA, reaction 
profile: initial denaturation (98°C, 30 s), denatura-
tion (98°C, 10 s), annealing (66.8°C, 30 s), extension 
(72°C, 45 s), final extension (72°C, 10 min), 35 times 
from denaturation to extension.

Product purification. PCR products were se-
parated in 1% agarose gel, stained by ethidium 
bromide. Amplification products were cut off the 
gel and purified by QIAquick Gel Extration Kit 
according to manufacturer instructions. .

Restriction polymorphism of amplified frag-
ments. Purified fragments were cut separately 
by 7 different restriction enzymes listed: AluΙ  
(5'AG/CT 3'), RsaΙ (5'GT/AC 3'), Hin6Ι (5'G/CGC 
3'), TasΙ (5'/AATT 3'), MboΙ (5'/GATC 3'), TaqΙ  
(5'T/CGA 3'), TaiΙ (5'ACGT/3'). Manufacturer ’s 
instructions were followed. The resulting frag-
ments were separated on 2% agarose gel and frag-
ments were scored according to their presence or 
absence.

Sequencing. Purified amplification products 
resulting T. aestivum L. Stepowa and Nela and  
T. diccocoides were cloned into pCR2000, trans-
formed into E. coli, plasmids were isolated and 
purified. Sequencing was done by Applied Biosys-
tem BigDye terminator kit and Applied Biosystem 
ABI instrument. 

Data analysis. For each accession, a binary matrix 
reflecting specific band presence (1) or absence 
(0) was generated. Pairwise distances between 
the accessions based on Hamman dissimilarity 
metrics were calculated. UPGMA-clustering was 
conducted using the SYN-TAX 2000 program pack-
age (P����� 2001). 

RESULT AND DISCUSSION 

Characterisation of genetic resources has been 
based for a long time on evaluation of morpho-
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logical traits and in the case of cultivated species 
on the results of field trials. Biochemical makers 
and in the recent years DNA markers have been 
introduced successfully. The information is used for 
classification and maintenance of genetic resources 
and core collection development and perhaps in 
practical breeding (O����� et al. 2002).

In our investigation we attempt to describe vari-
ability of GBBSI underlying genomic sequence. 
Primers were designed and PCR reaction optimised. 

Optimised reaction conditions as described in 
material and methods were used to amplify GBSSI 
underlying genomic sequence from accessions listed 
in material and methods. Purified amplification 
fragments were subjected to restriction analysis 
and together 63 different restriction fragments were 
scored indicating high level of variability in the 
coding sequences. For each accession two bulks of 
10 plants were analysed. Length polymorphisms 
of amplification products and further restriction 
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Figure 1.Association among analysed accession based on scored restriction fragment polymorphism of GBSS I.
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fragment of amplification products were scored. No 
length polymorphism of amplification products was 
recorded. More precise techniques than agarose gel 
electrophoresis, e.g., capillary electrophoresis and 
fluorescently labelled primers, would be necessary 
to detect the differences (S������ et al. 2004) Cluster 
analysis and resulting dendrogram fully reflects 
expected relation among analysed species (K����� 
2001 – www.virtualherbarium.org/GPWG/) (Figu-
re 1). Cluster analysis clearly separate T. diccocoides 
L. with AABB genomes. Accessions possessing 
A genomes (T. urartu, T. monoccoccum, T. boeoticum, 
T. boeoticum) clustered together with T. araraticum 
which has AAGG genomes. Relative genetic dis-
tance between T. urartu and T. monoccoccum was 
0.016 and they were identified as the two most 
closely related species. On the other hand genetic 
distances were higher in case of two bulked acces-
sions of T. boeoticum and two bulks of Ae. tauschii. 
The most distant were Elytrigia pycnantha and  
T. dicoccoides with relative genetic distance 0.635. This 
demonstrates the variability of the sequence within 
genetic resources of wild species. It is possible to 
conclude, that wild wheat related species might be 
potential sources of new allele types. Variability in 
the sequences amplified from eight T. aestivum L. 
today cultivars were not identified (data not shown
here) using restriction endonucleases. 

The search for natural knock-out alleles of GBSSI 
in bread wheat is complicated by the presence 
of A, B, and D genomes in allohexaploid bread 
wheat and A and B genomes in tetraploid pasta 
wheat. GBSSI is encoded by a locus found on the 
7A and 7D homoeologous chromosomes, and, due 
to a trans- location, on the 4A chromosome. Dif-
ficulties of finding naturally-occurring knock-out 
alleles of the waxy locus as a consequence were 
pointed out by several authors (G�������� 1998;  
M���� 2005). 

DNA sequences that we identified in GBSSI of 
modern wheat cultivar Nela were identical with 
those available in public database (NCBI). One 
DNA GBSSI sequence (A genome specific) identified 
in old cultivar Stepowa differed from published 
sequences combining known SNPs and In/Dels 
from Wx-1A and Wx-1B specific sequences. DNA 
sequences identified in GBSSI in T. dicoccoides dif-
fer from published sequences. Several SNPs and 
In/Del were found in intron and exons.Analysis of 
a single gene can assist in revealing genetic vari-
ability within and between species. Sequencing of 
a single gene across accessions can reveal in more 

detail allelic variants of the gene. Sequencing is 
more powerful than restriction analysis. Different 
allelic forms could be detected and properties of 
corresponding protein(s) may be further investi-
gated for their final qualities. 
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