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Inferring Genetic Relationship Among Haplomes
in Triticeae: The Utility of the 55 DNA Units with Examples

B. R. BAum
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Abstract: In higher plants nuclear rRNA is encoded by multiple copies of IDNA genes, arranged in arrays of tandem
repeats at one or more loci. Each unit comprises a coding region of ca. 120 bp and a non-transcribed spacer (NTS)
that contains regulatory signals for transcription. In the Triticeae two separate major loci containing tandem arrays
coexist, differentiated in the main by the length and nucleotide sequence of the NTS. Such groups of sequences
were named unit classes. Unit classes, alone or in combination, and the differences between them are useful in
representing haplomes of taxa within the Triticeae. Moreover, phylogenetic relationships among unit classes and
the haplomes that they signify may be inferred from the nucleotide sequences of the NTS. Several examples will
be presented and discussed along with some issues relating to multigene families and phylogenetic inference.
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twat of orthology

The 55 DNA gene codes for the 55 ribosomal
portion. The 55 DNA units in the Triticeae are organ-
ized in arrays of tandem repeats with the highly
conserved genes separated by the more variable,
non-transcribed spacer region (henceforth NTS).
In a number of publications (e.g., BAum & BaILEY
1997, 2000, 2001; Baum & Jornson 1994, 1996, 1998,
1999, 2000, 2002, 2003; Bauwm et al. 2001, 2003), we
have described the molecular diversity of 5S DNA
sequences in species within the genera Elymus,
Hordeum, Kengyilia, and Triticum and based on
their sequences classified the 5S DNA units into
putative orthologous groups, which we called unit
classes. In addition we found that we could assign
the different unit classes to haplomes. For example,
in H. vulgare L. we found sequences belonging to
a unit class we labelled “shortI1” to represent the
I haplome identified in this taxon. Subsequent
analyses (ibid) led to the assignment of unit classes
to the other haplomes or four “basic genomes” in
Hordeum (BoTHMER et al. 1986, 1987).

Studies by AppeLs and Baum (AprrELs & Baum
1992; BaAum & ArrELs 1992) tentatively divided the

5S rRNA genes in the Triticeae into two types — the
short type ranging in size from 327 to 468 base
pairs (bp) and the long type ranging from 469-
500 bp — and we initially adopted their terminol-
ogy. As described in our previous publications
(ibid.), duplications, insertions and/or deletions
can have a profound effect on this simple divi-
sion. The effect is actually so profound that the
length alone does not necessarily determine the
unit class or the assignment of a sequence to
a particular unit class and haplome. It is the
sequence divergence and the pattern of blocks
of sequences that are crucial for their correct
assignment (Bauwm et al. 2001). Most taxa that
have been investigated to date contain two unit
classes per haplome but several exceptions have
been identified. For instance in bread wheat, a
hexaploid, we found five unit classes assignable
to the three haplomes (Baum & BarLey 2001), the
expected number would have been six; it may be
that we failed to capture the sixth. We are able to
use the sequence divergence of the 5S DNA NTS,
and the assignment of unit classes to haplomes,
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to infer phylogenetic relationships among the
various haplomes.

MATERIALS AND METHODS

Cloning and sequencing. The materials inves-
tigated and the isolation of genomic DNA, PCR
amplification of the 5S DNA genes, cloning of PCR
products and sequencing of plasmid DNA have
been described, e.g., in BAum and BaiLey (1997,
2000, 2001), BaAuM and Jounson (1994, 1996, 1998,
1999, 2000, 2002, 2003), Bauwm et al. (2001, 2003,
2005). The PCR primers target the coding regions
in tandem repeats and amplify a sequence starting
from 5' from the BamH1 site within the transcribed
region, through the NTS, to a site 3' of the BamH1
site within the adjacent unit in the array. Amplim-
ers were either digested with BamH1, cloned into
the BamH1 site of pUC19 (YaniscuH-PErRrON et al.
1985), and transformed into Escherichia coli strain
DHb5a or latterly ligated directly into pGEM-T Easy
(Promega Biotech) and transformed into DH5a.
For each sequence from hundreds of clones, both
strands were sequenced.

Determination of putative orthology. Align-
ments and manual refinement were carried out
as detailed in Bauwm ef al. (2001) to determine unit
classes, i.e. putative orthologous groups. Based on
BLAST (basic local alignment search tool, ALtscHUL
et al. 1990) searches, these classes were labeled to
reflect known haplomes in Triticeae.

Test of orthology. To test for orthology of the
units within unit classes Maximum Likelihood
(ML) analysis was carried out using fastDNAmI®
(OrseN ef al. 1994). The results have also been
used to assess diversity among the units within
each unit class. Prior to the ML analysis the align-
ments were subjected to likelihood ratio tests of
56 different evolutionary models (Posapa 2003;
FersensTEIN 2004) to choose the best fitting model
and parameters given the data in conjunction with
PAUP (Sworrorp 1998) version 4.0b10 and using
MODELTEST (Posapa & CraNDALL 1998).

Phylogenetic inference among unit classes. Long H1,
shortI1, long H2 and long Y2 unit classes in Hor-
deum. First, selection of exemplar sequences was
made from among the putative orthologous sets of
sequences; ML analyses using PAUP and Bayesian
analyses using MrBayes (HuELSENBECK & RoNquisT
2001) were then carried out.

Haplome relationships in Triticeae: Example (1)
— Unit classes in Hordeum. Unit classes’ data were

first summarized based on their presence/absence
within taxa. A neighbor-joining (SaiTou & NErI
1987) analysis (NJ]) was then performed and the
tree was then rooted by a hypothetical ancestor,
the choice of which is discussed below. The rooted
tree was then subjected to a tree analysis using
parsimony in order to obtain and describe the unit
class changes on the NJ tree.

Haplome relationships in Triticeae: Example (2)
— Secale and related haplomes in Triticeae. Con-
ducted as in 4 above, i.e. by selecting exemplar
sequences first and then conducting ML and Baye-
sian analyses.

RESULTS AND DISCUSSION

Long H1 and short I1 unit classes
in Hordeum vulgare

Results from our initial analysis of a large num-
bers of clones isolated from Hordeum vulgare L.
showed that the two classes recommended by
ApreLs and Bauwm (1992), i.e., the long and the
short types, vary so much in size that there is a
substantial overlap between the two. For example
the alignment in Figure 1 depicts the two unit
classes and displays the variation between them.
In this example some of the “short” units are actu-
ally longer than some “long” units in part due to
the presence of (TAG) repeats within the NTS of
the “short” units. In several publications we have
extensively documented the effects of duplications,
insertions and/or deletions of the length of the
NTS that render the simple division of units into
“short” and “long” difficult.

Furthermore, the combination of these two unit
classes was found to be characteristic of the spe-
cies containing the I haplome, viz. Hordeum vul-
gare, H. spontaneum C. Koch, and both diploid
and tetraploid H. bulbosum L. (BaAum & JoHNSON
1996). The naming of the unit classes reflects the
haplomes. Thus the short I unit class in this ex-
ample is characterized by a contiguous chain of
two to many TAG repeats (the top sequences in
Figure 1). We found that the establishment, and
thus recognition of classes, depends on the pattern
of the sequences which may be revealed by careful
alignment. We will return to the problem of the
recognition of classes in the section “Detection of
Orthology” below, but these results suggest that
the sequences of the different NTSs can be used to
define unit classes and to determine relationships
among haplomes and species of the Triticeae.
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Long H1, short I1, long H2 and long Y2 unit
classes in Hordeum

The South American diploid Hordeum species
belong to the HH genome species (BoTHMER &
JacosseEn 1991). Based on 374 sequences of 12 taxa
we found that two different unit classes characterize
them, viz the long H2 and long Y2 (only a small
fraction of the alignment in shown in Figure 2,
where the two unit classes differ obtained after
deleting the sequences from top and from bottom,
for illustration only). Based upon LRT tests, the
data best fit the HKY+G, i.e. the Hasegawa model
(Hasecawa et al. 1985) with the Gamma distribution
rates of nucleotide substitutions (Yanc 1994). ML
analyses and various tests including the molecular
clock, as well as Bayesian evolutionary inference
analysis implied that the long H1 and short I unit
classes found in the II genome diploids diverged
from each other at the same rate as the long H2
and long Y2 unit classes found in the HH genome
diploids (Figure 3). The divergence among the
unit classes, estimated to be circa 7 MY, suggests
that the genus Hordeum may be a paleopolyploid
(Bauwm et al. 2005). Figure 3 also depicts the test of
orthology (see Discussion). Once more these results
suggest that analysis of the NTS can be useful for
investigating relationships between haplomes in
Hordeum.

Haplome relationships in Triticeae: example (1)
— Unit classes in Hordeum

The resulting NJ tree (Figure 4) is shown with the
inferred unit class changes. This tree was rooted at
a hypothetical ancestor containing both the long
H1 and a long Y2 unit class, as no outgroup was
contemplated. The key point here is that results
based on the analysis of 5S DNA unit classes could
be used to infer the evolutionary path among the
Hordeum taxa and could bear directly on the re-
lationship among the haplomes in the genus. An
example of our analysis of the Triticeae tribe based
upon the results from the time calibration analysis
was recently presented (Bauwm et al. 2005). Hordeum
as we know it today was most likely different from
the ancestral stock that may have originated at
about the start of the drift of Africa from South
America (at start of the Cretaceous). The discov-
ery that H. capense (S. Africa) and H. depressum
(N. America) are the only extant species found to
contain both the long H1 and long Y2 unit classes

provides support for this hypothesis; subsequent
analysis of the DMC1, EF-G and rbcL genes by
PeTERSEN and SEBERG (2004), also supports the idea
that H. capense is an ancient relict. The several more
Hordeum species currently being investigated may
help solidify this interpretation.

Haplome relationships in Triticeae: example (2)
— Secale and related haplomes in Triticeae

The Secale sequence analysis identified two unit
classes, the long R1 and short R1. The test of orthol-
ogy of these unit classes is depicted in the ML tree
(Figure 5). ABLAST search for 55 DNA sequences
from known unit classes most closely similar to
the long R1 unit class contained sequences of the
long P1 unit class from Agropyron (PP haplomes)
and from Kengyilia (StStYYPP haplomes), long J1
from Thinopyrum (J haplome), whereas the search
for sequences of the short R1 included the long S1
from Pseudoroegneria (St haplomes) and Kengyilia
(StStYYPP haplomes), the short J1 from Thinopyrum
(J haplomes) and the short V1 from Dasypyrum
(V haplomes). ML and Bayesian analyses yielded
a tree with the long R1 units where the long P1
and long ] unit classes were closest to the R1 unit
class, whereas they yielded a tree with the short
R1 units where the S1 and short J1 unit classes
were closest to the short R1 unit class. This result
indicates a possible close relationship between
the St, ] and R haplomes (not shown) and again
indicates how analysis of the NTS can be used for
formulate hypotheses for future study.

Detection of orthology

Determination of unit classes. Central to this
discussion is the detection of orthologous groups
of sequences and their grouping into unit classes.
The determination of putative orthologous groups
of sequences is much more advanced for protein
than for DNA sequences in part because orthol-
ogy analysis is becoming an important aspect of
gene function prediction. The use of phylogenetic
information in genome annotation is known as
phylogenomics (Eisex 1998). Conventional phyl-
ogenomics methodology employs mostly manual
approaches; however, recent advances have been
made in automating protein phylogenomics, based
on similarity clustering, such as the COGs da-
tabase (Tatusov ef al. 2001). Recently, attempts
have been made to use explicit phylogenetic tree
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Figure 3. Best maximum likelihood tree, the molecular clock, parsimony trees superimposed on each other, of
exemplars of the following unit classes in Hordeum, long H1, short I1, long H2 and long Y2. The first two are
found in the I haplome species whereas the last two in the South American diploid H haplome species. MY — Mil-
lion Years since divergence; values above major branches — bootstrap support (%); values below major branches:
branches lengths (distance from root, distance from tip) and values further below —assigned branch length under
the parsimony criterion (Min. possible length-Max. possible length); scale bar — distance from minimum evolution
distances; on the right the four unit classes. For example, in the most basal branch: major branch length = 0.00794
(distance from root = 0.01256, distance from tip = 0,09531); and further below on the same branch: branch length
= 38 base changes (minimum length changes = 20 and maximum branch changes = 38)

analysis instead to place or classify a sequence et al. (2003). Conventionally in protein analysis
in a subfamily or group of a gene tree of known one uses BLAST or similar programs. When one
sequences. See for example the protein sequence encounters a sequence that is not similar to a pre-
analyses of Zmasex and Eppy (2002) and Arvestap  viously known group a new group is created. We
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Figure 5. Test of orthology of the two unit classes in Secale. The sequences at the far right on the long branch
were assigned to the long R1 unit class, whereas the left at the base of fastDNAml tree were classed as the short
R1 unit class
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have taken the same manual and conventional
approach to determine unit classes in the Triticeae
(Bauwm et al. 2001), except that we validate them a
posteriori by phylogenetic analysis (as illustrated
in Figures 3 and 5).

With respect to DNA sequences orthology analysis
is first based on the phylogeny of the sequences,
and not with respect to function, allowing the use of
either coding or noncoding regions or both. This is
usually done manually although attempts have been
made to combine alignments with phylogenetic
analysis in one step, such as the POY (Phylogeny
Reconstruction via Optimization of DNA and other
Data) program (WHEELER ef al. 2003) for which the
methods are based on WHEELER (1996, 1999). This
method does not yet carry out orthologous analysis
and, being based upon parsimony, may therefore
yield erroneous results. As far as I know, no at-
tempts were made to automate the classifying of
multigenes into orthologous sequences. One needs
a species tree to rigorously identify orthologous
genes, but it is impossible to find a species tree
unless the orthologous sequences of the species
are known. With one gene we obtain a gene tree,
not a species tree. In a multigene family, such as
the 55 rDNA the situation is more complicated as
there are different unit classes of DNA units which
are paralogous with respect to each other.

Wendel and associates in an excellent review on
the utility of nuclear genes for phylogeny reconstruc-
tion (SmALL et al. 2004) emphasized the necessity of
cloning prior to sequencing, as we recommended
for the Triticeae (Baum ef al. 2001) but only when
polymorphism is detected at the gene amplification
stage by PCR for orthology assessment. They did not
take into consideration that sequence polymorphism
may occur even when the PCR products appear
uniform. They also advocated the use of BLAST as
one of the steps in the assessment of putative or-
thology, as we had done. When PCR amplification
reveals two or more types (bands on a gel), then
clearly direct sequencing of the unpurified PCR
products is not realistic. It is less well recognized
that sequence polymorphism may occur even when
the PCR products appear uniform in size (Baum et
al. 2001) and that cloning of PCR products remains
necessary in this case too. SmaLL et al. (2004) also
recommended developing locus specific primers
once “types” had been defined. Although we have
successfully used such probes for the analysis of
different unit classes via FISH (Bauwm et al. 2004),
we advocate sequencing of many clones in order to

establish putative orthology classes and to provide
strong support for them.

As described above, multiple 55 rDNA unit classes
are seen in the grasses. Wendel and associates found
only one putative orthologous group of sequences
per haplome in Gossypium, perhaps because of the
nature of this genus, or because of gene loss due to
a deletion or a failure to sequence enough samples.
Sufficient sampling remains a vexatious problem
(Bauwm et al. 2001) for which we have no solution.

ML analyses

Testing orthology and haplome divergence.
Whether sequence alignment it is carried by au-
tomatic means or by a combination of programs
such as BLAST and alignment programs followed
by manual refinement, as is conventionally car-
ried out, it is obviously the most important step
in determining putative orthology. This is as true
for single copy genes as it is for multicopy genes
such as the 5S DNA unit classes in the Triticeae.
Tests of orthology rely on phylogenetic analysis
of the putative orthologs, e.g., unit classes in Tri-
ticeae. Parsimony, although useful under certain
conditions, lacks an explicit model of evolution
(GoLpmAaN 1990). In recent years great progress
has been made especially in ML algorithms. ML
methods “allow both a wide variety of phylogenetic
inferences from sequence data and robust statisti-
cal assessment of all results” (WHELAN et al. 2001).
The authors went so far as to express the opinion
that “it cannot remain acceptable to use outdated
data analysis techniques when superior alterna-
tives exist” (ibid) as some have done.

In the tests of putative orthology the DNA se-
quences that belong to the same unit class were
mostly, if not all, found on small branches of the
tree compared to the much longer branches which
subtended the “clusters” of the orthologs, i.e. the
unit classes (Figures 3 and 5 for example). To carry
out the relationship among the groups of orthologs
we first selected exemplar sequences from each
orthologous group (unit class) and then subjected
the data to tests of fitting the substitution model
from among the different models of evolution so
far defined; and then subjected the data to ML
analyses with the parameters of the models. An
assessment of the robustness of the resulting trees
was achieved by non-parametric bootstrapping
(FELSENSTEIN 1985; SWoFFORD ef al. 1998) and includ-
ing Bayesian analysis (HuELSENBECK & RoNQuisT
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2001). Using this approach we can estimate the
phylogenetic relationships among haplomes in
the Triticeae, in other words haplome relationships
can be estimated by the phylogenetic relationships
among the unit classes and is thus also achieved
with strong statistical support. An example of this
procedure was described above for the I haplome
and H haplome diploid Hordeum species.

Total evidence versus supertrees

The different unit classes in the Triticeae, i.e.
the different groups of orthologs are paralogous
groups. They need to be combined for a global
analysis. Inferring phylogeny relationships by
analysing combined data of different kinds, e.g.
morphology and gene sequences, sequences from
different genes, DNA-DNA hybridization with
DNA sequences or serological data with any of these
or any combination, requires comparison of like
with like. This is a controversial issue, because gene
phylogenies may be incongruent with organismal
phylogenies. Some authors like to make separate
phylogeny estimates from different data sets, and
then test their congruence as in “total evidence”,
i.e. the matrix of evidence is analyzed as one whole
without being partitioned (Kruce 1989, 2004). The
advantage of using supertrees instead is that these
methods, such as Matrix Representation using
Parsimony (MRP) (BauMm 1992; Racan 1992; BaAum
& Racan 2004) retain the information contained
in each of the different genes (or paralogs) when
combining them. Analysis by supertrees enables
analysis of paralogous sets of sequences from a
multigene family such as the 55 DNA gene.

CONCLUSION

While the use of sequence data from multigene
families to infer phylogeny is not without chal-
lenge, the methods that we have described in sev-
eral publications and summarized here, provide a
sound framework for such analyses. The results to
date based mainly upon sequences of the 55 rDNA
NTS are proving to be useful for inferring possible
relationships among haplomes in the Triticeae, and
for constructing hypotheses about their evolution.
These approaches should be applicable to other
multigene families
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