https://doi.org/10.17221/134/2018-CJGPB

Overexpression of *Arabidopsis* H⁺-pyrophosphatase improves the growth of alfalfa under long-term salinity, drought conditions and phosphate deficiency

Jia-Hao Su, Tian-Hui Bai, Fei Wang, Ai-Ke Bao

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China

Electronic Supplementary Material (ESM)

Supplementary Information

Vector and transformation procedure

Agrobacterium strain and vector. Agrobacterium tumefaciens strain GV3101 containing pRG395 vector was used for transformation. The pRG395 vector was kindly granted by Prof R. GAXIOLA from Arizona State University and carries the coding sequence of the AVP1 gene under control of a tandem repeat of the CaMV35S promoter with the *nptII* (neomycin phosphotransferase II) gene conferring resistance to kanamycin as previously described by PARK *et al.* (PNAS, 2005, 102, 18830–18835.).

Generation of transgenic alfalfa. The hypocotyls from four-day-old seedlings of alfalfa (M. sativa L. cv Xinjiang Daye) as explants were used for transformation. A. tumefaciens containing the plasmid was cultured in liquid LB medium supplemented with 75 mg/l kanamycin for 2 days at 180 rpm, 28°C. The bacterial suspension was centrifuged at 4000 rpm for 10 min at 4°C and re-suspended in liquid MSH medium (MS medium supplemented with 5.0 mg/l 2, 4-D and 1.0 mg/l kinetin) to the final concentrations $(OD_{600} = 0.5 - 0.7)$. Meanwhile, the hypocotyl explants were firstly pre-cultured on MSH medium for 4 days in the dark at 24°C, then they were immersed into bacterial suspensions for 20 min. Treated explants were blotted with sterilized filter paper and co-cultivated on MSH medium for 4 days under dark at 24°C. After co-cultivation, the infected explants were washed with sterilized ddH₂O containing 200 mg/l carbenicillin, then they were cultured to MSH medium containing 200 mg/l carbenicillin in the dark at 24°C. The embryogenic calluses were transplanted onto SH medium containing 75 mg/l kanamycin and 100 mg/l carbenicillin for 8 weeks. To screen the transformants, the surviving resistant somatic embryos were cultured on half-strength MS medium supplemented with 10 g/l sucrose and 40 mg/l kanamycin at 24°C for 4 weeks. Finally, the rooting resistant plants were transferred into plastic pots (cylindrical pots of 8 cm in diameter and 10 cm in height, 1 plant/pot) containing the artificial soil with a mixture of vermiculite, perlite, and peat moss (v/v, 1:1:1) and cultured in the greenhouse under a photoperiod 16 h/8 h (light/ dark) at 28°C in the light and 24°C in the dark. The wild-type (WT) plants were obtained via the same tissue culture process used to produce transgenic plants (without transformation and selection).

https://doi.org/10.17221/134/2018-CJGPB

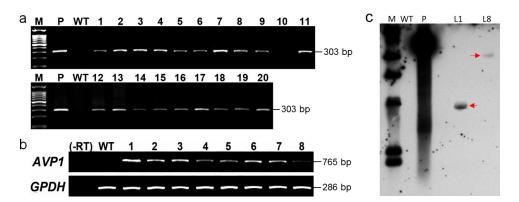


Figure S1. Molecular characterization of transformed alfalfa plants: genomic DNA PCR analysis of wild-type (WT) plants and transgenic lines (1-20) using *AVP1* specific primers (a), expression analysis of *AVP1* by RT-PCR in random 8 transgenic alfalfa lines (1–8), and alfalfa GPDH gene fragment was amplified as an internal control (b), southern blot analysis showed that *AVP1* was integrated into the genome of transgenic alfalfa lines L1 and L8 with single copy (c) M – mark; P – plasmid DNA carrying *AVP1*; (-RT) – without reverse transcriptase

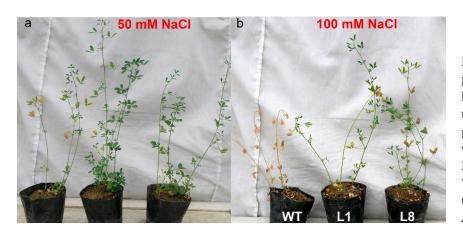
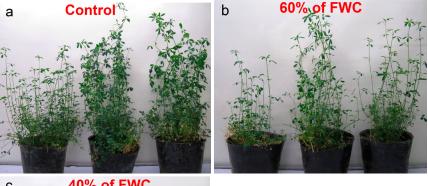



Figure S2. Growth of wild-type plants and transgenic alfalfa under long-term salt treatments; the photographs show the representative plants that were treated for 20 days with 50 mM (a) and 200 mM (b) NaCl

WT – wild-type plants; L1, L8 – transgenic lines overexpressing *AVP1*

c 40% of FWC

Figure S3. Growth of wild-type plants and transgenic alfalfa under long-term drought treatments; the photographs show the representative plants that grew for 35 days under well-watered conditions (a), 60% of FWC (b) and 40% of FWC (c)

WT – wild-type plants; L1, L8 – transgenic lines overexpressing AVP1

https://doi.org/10.17221/134/2018-CJGPB

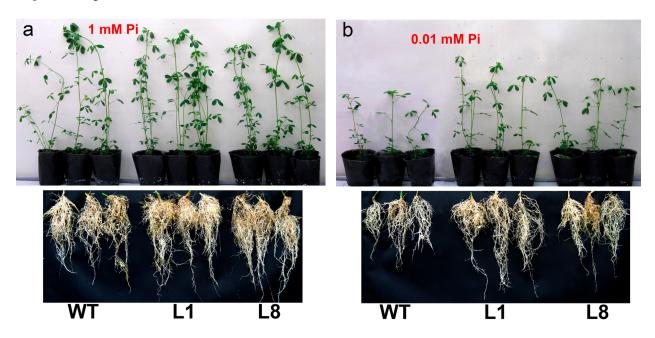


Figure S4. Growth of wild-type plants and transgenic alfalfa under phosphate deficiency (low-Pi) conditions; the photographs show the representative plants that were treated for 21 days with (a) 1 mM Pi (control) and (b) 0.01 mM Pi (low-Pi) WT - wild-type plants; L1, L8 - transgenic lines overexpressing AVP1