https://doi.org/10.17221/97/2017-CJGPB

Correlations between SmCPS1 Promoter Polymorphism and Tanshinone Contents in Salvia miltiorrhiza

YING SUN, XIN CHEN*, XIAO-YAN GAN, ZHU-YUN YAN, DI-XIU MU and QING-RONG WANG

Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China

Electronic Supplementary Material (ESM)

Promoter isolation

Seven pairs of primers used were in Table S6. These primers were designed using KF718290.2 (genbank accession number) and the scaffold sequence of *S. miltiorrhiza* as references.

PCR reactions were conducted in a 50 μ l volume consisting of 35–60 ng template DNA, 5.0 μ l of 10× PCR buffer, 4.0 μ l of MgCl₂(25 mM), 4.0 μ l of dNTP Mixture (2.5 mM), 2 μ l of each primer (10 μ M), 1 U Taq.

PCR conditions for all primer pairs except for P3 were as follows: initial denaturation at 94°C for 3 min followed by 45 cycles of amplification; each cycle consisted of 94°C for 30 s, Ta (Table 2) for 30 s and elongation at 72°C for 70 s. Then a final extention at 72°C for 5min was adopted to complete the reaction. A touchdown PCR for primer pair P3 was as follows: initial denaturation at 94°C for 3 min followed by 45 cycles of amplification; 94°C for 30 s, Ta (dropping by 0.2 per cycle to 45°C) for 30 s and 72°C for 70 s for the first 35 cycles; then 94°C for 30 s, 45°C for 30 s and 72°C for 70 s for ten cycles. Then the reaction was completed after a final extention at 72°C for 5min.

The assembled sequences were aligned and truncated to the same ends for further analysis.

Table S6. Primer pairs used in the amplification of SmCPS1 promoter and 388 bp downstream translation start site

Primer Sequence(5'-3')		Ta (°C)	Amplicon (bp)"
P1	F: ACTCAAATCCTAAACCCGTTCC R: CATCTACTGTGGCAACTGTGAA	56 606	
P2	F: AGGCAGAAAAAGAAAAACATGATT R: TGAGACAAGATCGTGGGATAAA	52	1073
Р3	F: ACGGTTATTAAGGAGAATATTATTAGTG R: TGAGACAAGATCGTGGGATAAA	52	785
P4	F: AAATAGGCAGGGAAATGTTAATTAATTA R: CATTTCCACATCCAATTAACCTCAAAAC	52	524
P5	F: GATTACTAGTGCAATAAATGAGATG R: CACCTTTCATCTCCTACTTTATCAA	50	830
P6	F: AAGGTGGCGGTAGTCAA R: CTCCTTAATAACCGTGCAGAAAC	53	1027
P7	F: GAGAGTTGTCGATTAACACTAC R: TGTATGGATACAACTGAACACCTC	52	765

Ta – annealing temperature