Czech Journal of Genetics and Plant Breeding, 61, 2025 (1): 1-22 Original Paper

https://doi.org/10.17221/12/2024-CJGPB

Unravelling population structure and marker trait
association using SSR markers among the identified
drought tolerant rice landraces (Oryza sativa L.)

SHANMUGAM MANjU DEVI', AMALRAJ JOHN JOEL'*, MUTHURAJAN RAVEENDRAN?,
RAMAMOORTHY PUSHPAM?, SENGALAN MUTHURAMU?, RAMAN PUSHPA®,
N. SRITHARAN®, PERIYASAMY PRASANNA', RAMALINGAM SURESH®*

!Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology,
Tamil Nadu Agricultural University, Coimbatore, India

2Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, India

3Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural
University, Coimbatore, India

4Agricultuml Research Station, Paramakudi, India

>Tamil Nadu Rice Research Institute, Aaduthurai, India

Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University,
Coimbatore, India

*Corresponding authors: jnjoel@gmail.com; suresh.r@tnau.ac.in

Citation: Manju Devi S., Joel A ], Raveendran M., Pushpam R., Muthuramu S., Pushpa R, Sritharan N., Prasanna P, Suresh R.
(2025): Unravelling population structure and marker trait association using SSR markers among the identified drought tolerant
rice landraces (Oryza sativa L.). Czech J. Genet. Plant Breed., 61: 1-22.

Abstract: With climate change, plants face numerous stresses, notably drought for rice cultivation. Improving rice drought
tolerance is vital for sustainable production in water-scarce regions. Identification of drought tolerant genotypes at the
seedling stage of the crop contributes to build a climate resilient genotype during the period of water scarcity and under
challenging environmental conditions. Hence, polyethylene glycol-6000 (PEG-6000) induced drought conditions could
be used for testing the drought tolerance in rice at an earlier stage of the crop. Optimization of PEG-6000 concentration
for screening index at -6 bar was done using three drought-tolerant and two drought-susceptible check varieties based
on probit analysis. Subsequently, 100 rice landraces underwent PEG-6000 induced drought screening at —6 bar and a total
of 32 genotypes were selected as tolerant. After 14 days of treatment, the nine observations viz. germination %, root length
(cm), shoot length (cm), number of secondary roots, fresh weight (g), dry weight (g), shoot/root ratio, root/shoot ratio
and vigour index were recorded. Variance analysis, revealing significant genetic variation among genotypes for all studied
traits, indicating genetic variability. Post hoc analysis confirmed notable variation among treatments. Principal component
analysis revealed three components, with the first three accounting for 88.89% of total variability. With respect to the biplot,
the ten genotypes viz., IRGC109, IRGC403, IRGC448, IRGC461, IRGC466, IRGC486, IRGC508, IRGC518, IRGC527 and
IRGC535 are the seedling stage drought tolerant genotypes based on shoot length, number of secondary roots and vigour
index. Population structure classified the accessions into two subpopulations, reflecting diversity. The allele frequency di-
vergence is 0.095 which is a measure of fixation index revealing that the moderate divergence is not extremely pronounced.
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Genetic diversity, assessed through 26 SSR markers selected from drought tolerant QTLs and markers related to vigour

index, exhibited 100% polymorphism with 115 alleles and an average PIC value of 0.61 per primer. Shannon index varied
between 0.34 (RM212) and 1.96 (RM252), averaging 1.18. Six SSR markers viz.,, RM246, RM302, RM252, RM219, RM251,
and RM486 were associated with the six key traits viz., shoot length, root length, number of secondary roots, dry weight,

shoot/root ratio, and root/shoot ratio respectively offering valuable resources for selecting drought-tolerant accessions as it

provides the first step in the selection of genotypes based on the key traits.

Keywords: molecular diversity; polyethylene glycol; polymorphic information content; Shannon index; seed vigour

Rice (Oryza sativa L.) is one of the most important
cereal crops in the world, having been cultivated
across 165.25 million ha worldwide (FAO 2022) with
a global production of 501 million metric tons (Statista
2021; www.statista.com). In India, over 46 million ha
ofland are used for rice cultivation. With increasing
abnormal changes in climate and global warming,
plants are experiencing a number of abiotic and
biotic stresses (Pandey et al. 2017). Drought affects
more than 23 million hectares of rainfed rice in Asia
(Kumbhar et al. 2015) and causes 65 to 85% yield loss
(Vinod et al. 2019). The major rice-producing states
affected due to drought in India are West Bengal,
Odisha, Punjab, Uttar Pradesh, Bihar, North eastern
states and southern peninsular regions. The yield loss
due to drought in these regions is estimated to be
around 5 to 10% (USDA 2022; https://ipad.fas.usda.
gov). Under this situation, there is a need to improve
drought tolerance in rice to have sustainable rice
production in water-limiting areas.

The seedling stage of crops is particularly vulner-
able to drought stress due to its critical role in seed
germination, which is essential for crop establishment
and transition phases (Farooq et al. 2019). Limited
water availability during germination significantly
hampers crop growth and productivity (Rauf et al.
2007). Leaf growth diminishes under drought stress
because of reduced water potential (Zhu et al. 2020)
which leads to poor cell development and smaller leaf
areas (Hussain et al. 2018). Leaf rolling and the onset
of early senescence are additional key characteristics
observed under drought stress. The impact of drought
stress at the seedling stage is experienced by other
crops viz., maize, wheat, and pearl millet (Ahmed et al.
2022; Chakraborty et al. 2022; Sheoran et al. 2022).
To induce drought stress, different osmotic agents
such as sorbitol, mannitol, sucrose, and polyethylene
glycol are utilized. Among these, polyethylene glycol
(PEG-6000), known for its high molecular weight and
safety for humans and other organisms, is commonly
employed (Awan et al. 2021). Consequently, seed
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germination is evaluated under laboratory conditions
using PEG-6000 to assess the genotype’s tolerance level
at seedling stage (Gholami et al. 2009). This method
serves as the standard approach for inducing drought
stress at an earlier stage of the crop.

Screening a large number of genotypes in natural
conditions is not feasible due to limited land area and
labour cost, which could be overcome by screening
under controlled condition. This method would likely
downsize the genotypes based on seedling vigor (Mah-
para et al. 2022). Seedling vigour is a complex trait
that depends on the seed germination % and seedling
length (Wang et al. 2010; Panda et al. 2019; Evamoni
etal. 2023). It is the ability of the seed to emerge rap-
idly from the soil (Huang et al. 2004). The seed with
high vigour plays an important role in the seedling
establishment (Lou et al. 2007) as well as competes
in early germination with respect to biotic and abiotic
stresses. Seed vigour also had a positive correlation
with seedling dry weight, root length, shoot length
and germination rate (Sanghamitra et al. 2021).

India is one of the centres for rice diversity (Singh
et al. 2016). Landraces serve as a repository to meet
new challenges during stressful condition. The diver-
sity of landraces broadens the genetic base for crop
improvement. Genetic diversity can be determined
by assessing morphological or molecular data. Evalu-
ation of genetic diversity using DNA marker tech-
nology offers non-destructive analysis which is not
influenced by environmental factors, requires only
a small quantity of samples and eliminates the need
for large experimental setups (Kanawapee et al. 2011).

Simple sequence repeats (SSR) markers, known
for their high informativeness, codominance, and
cost-effectiveness (Garcia et al. 2004), are pivotal
in detecting genetic variation among accessions (Ma
et al. 2011; Sajib et al. 2012). Widely applied in ge-
netic diversity analysis (Ni et al. 2002), molecular
map construction, and gene mapping (Zhang et al.
2007; Ma et al. 2011), SSR markers play a crucial role
in assessing germplasm diversity (Zhou et al. 2003;
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Jin et al. 2010; Ma et al. 2011) and trait association
studies. Despite their smaller numbers, SSR markers
provide a comprehensive genetic diversity spectrum
due to their multi-allelic and highly polymorphic
nature (Singh et al. 2016). Understanding the genetic
diversity and population structure aids in molecu-
lar breeding programs, emphasizing the importance
of trait association in breeding. Linkage disequilibrium
or association mapping is instrumental in correlating
phenotype with genotype, making it vital in analys-
ing germplasm. Therefore, the present study aims
to establish the suitability of PEG-6000 for drought
screening and the identification of superior drought
tolerant genotypes during the seedling stage itself.
Following this, the selected genotypes were evaluated
for population structure analysis, genetic diversity
studies. Also the association of SSR markers with the
traits specific to drought QTLs were also detected.

MATERIAL AND METHODS

Plant material. A total of 100 diverse rice landraces,
including three tolerant checks, Apo, Wayreram,
and Anna (R) 4, as well as two susceptible checks,

IR 64 and Jaya, sourced from National Bureau of
Plant Genetic Resources (NBPGR), New Delhi, were
employed to assess drought tolerance using an opti-
mised concentration of PEG-6000 (Table 1).
Optimization of PEG-6000 concentration. This
study utilized a completely randomized design (CRD)
featuring five distinct concentrations, with two replica-
tions each. The optimization of PEG-6000 concentra-
tion was conducted using three tolerant varieties viz.,
Apo, Wayreram, Anna (R) 4 and two susceptible checks
viz., IR 64 and Jaya. Four treatments with the osmotic
potentials of -2, —4, -6 and -8 bars were established
by adding 12.60, 18.60, 23.20 and 27.10 g of PEG-6000
to 100 mL of distilled water along with control of using
only distilled water of 0 bars was used for screening.
Screening of genotypes under optimized concen-
tration. A total of 100 rice genotypes were screened
under an optimised concentration of —6 bar (PEG-
6000) under laboratory conditions in the Department
of Plant Biotechnology, Centre for Plant Molecular
Biology and Biotechnology (CPMBB), Tamil Nadu
Agricultural University (TNAU), Coimbatore. A fac-
torial randomized complete block design with two
replications was used to facilitate the combination

Table 1. List of rice landraces used in the present study for screening of drought tolerance

S.No. Accession No. S.No. Accession No. S.No. Accession No. S.No. Accession No. S.No. Accession No.
1 IRGC22 21 IRGC145 41 IRGC264 61 IRGC385 81 IRGC483
2 IRGC47 22 IRGC146 42 IRGC272 62 IRGC403 82 IRGC486
3 IRGC48 23 IRGC155 43 IRGC282 63 IRGC411 83 IRGC487
4 IRGC58 24 IRGC158 44 IRGC291 64 IRGC413 84 IRGC4388
5 IRGC88 25 IRGC170 45 IRGC292 65 IRGC414 85 IRGC493
6 IRGC93 26 IRGC173 46 IRGC295 66 IRGC420 86 IRGC495
7 IRGC94 27 IRGC177 47 IRGC297 67 IRGC421 87 IRGC508
8 IRGC95 28 IRGC179 48 IRGC298 68 IRGC424 88 IRGC509
9 IRGC102 29 IRGC216 49 IRGC306 69 IRGC428 89 IRGC516
10 IRGC104 30 IRGC222 50 IRGC310 70 IRGC437 90 IRGC518
11 IRGC105 31 IRGC223 51 IRGC313 71 IRGC439 91 IRGC522
12 IRGC108 32 IRGC224 52 IRGC317 72 IRGC444 92 IRGC526
13 IRGC109 33 IRGC227 53 IRGC318 73 IRGC445 93 IRGC527
14 IRGC111 34 IRGC229 54 IRGC319 74 IRGC446 94 IRGC533
15 IRGC113 35 IRGC230 55 IRGC326 75 IRGC448 95 IRGC535
16 IRGC121 36 IRGC231 56 IRGC336 76 IRGC456 96 IRGC540
17 IRGC125 37 IRGC242 57 IRGC342 77 IRGC460 97 IRGC541
18 IRGC127 38 IRGC251 58 IRGC344 78 IRGC461 98 IRGC542
19 IRGC129 39 IRGC253 59 IRGC361 79 IRGC466 99 IRGC544
20 IRGC136 40 IRGC254 60 IRGC381 80 IRGC467 100 IRGC545

Tolerant check: Apo, Wayreram, Anna (R) 4; susceptible check: Jaya, IR 64
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of two factors. The first factor was rice genotypes,
and the second factor was two levels of PEG-6000,
i.e. control and —6 bar concentration of PEG-6000
solution. The desired quantity of PEG-6000 for —6 bar
concentration (23.20 g) was measured and mixed
in distilled water whereas, for control, seeds were
placed in distilled water (Kaufmann et al. 1971).
The seeds were surface sterilized with 0.1% sodium
hypochlorite solution and washed immediately three
to four times with distilled water. A total of ten seeds
per genotype were placed in separate sterilized Petri
plates covered with blotting paper in two replica-
tions. The Petri plates were kept in dark condition
until the germination occurred. Nine quantitative
observations viz. germination %, shoot length (cm),
root length (cm), number of secondary roots, root/
shoot ratio, shoot/root ratio, fresh weight (g), dry
weight (g) and vigour index followed by Gupta (1993)
and Addanki et al. (2019) were measured on 14" day
of stress as well as in control.

Genomic DNA extraction. The plant genomic
extraction was carried out in Plant Molecular Labora-
tory, CPMBB, TNAU, Coimbatore. The young leaves
of 10 to 15 days old seedlings from selected drought
tolerant genotypes were clipped and genomic DNA was
then extracted using modified CTAB method (Doyle
& Doyle 1987). The isolated DNA was quantified us-
ing Nanodrop/UV-VIS-Spectrophotometer (ND-1000
Spectrophotometer, M/s. NanoDrop Technologies,
USA) by measuring A260/A280 ratio and DNA quality
was checked by electrophoresis in 0.8% agarose gel.

SSR markers and PCR amplification. A total
of 26 rice SSR markers viz., RM202, RM11, RM276,
RM289, RM25, RM413, RM252, RM243, RM106,
RM218, RM219, RM251, RM486, RM302, RM404,
RM495, RM434, RM164, RM262, RM511, RM11928,
RM246, RM5752, RM133, RM152 and RM212 related
to drought study were used for molecular diversity
analysis (Table 8). The PCR amplification was carried
out in 10 uL of reaction mixture containing 100 ng ge-
nomic DNA (2 pL), 1x PCR Master Mix- Red (smART
Prime) (3 uL), 1 uL 0.4 uM of each forward and reverse
primer, and 3 pL sterile water using a thermal cycler
(Eppendorf Mastercycler Nexus GSX1 Cycler, Germany).
The thermal cycling program involved an initial dena-
turation at 94 °C for 10 min, denaturation at 94 °C for
30 s, annealing at 2 °C below melting temperature (Tm)
of respective primers for 30 s, primer extension at 72 °C
for 30 s for 35 cycles, followed by a final extension
at 72 °C for 7 min and 4 °C for cooling (McCouch
et al. 2002) (Master cycler gradient, Eppendorf). The
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amplified PCR products, along with a 100 bp ladder
(BIO-HELIX, Taiwan), were size fractioned by electro-
phoresis in 3% agarose gel prepared in 1x TBE buffer
and visualized under UV trans-illuminator at 302 nm.

Statistical analyses. The optimized concentration
of PEG-6000 based on 50% germination was carried
out based on probit analysis using the software Med-
Calc (Ver. 22.023). Using the R software with the help
of the Agricolae package (de Mendiburu 2019) analysis
of variance (ANOVA) was tested for its significance
at 0.05 and 0.01 level, followed by mean comparison
using Tukey’s honest significant difference (HSD) test
at a significance level of 5%. The principal component
analysis of Jolliffee and Cadima (2016) describes the
largest contributor to the total variance, which helps
to visualize the data better. The principle components
with more than 1 eigenvalues were taken for interpre-
tation. The statistical computation was done using
R software (Ver. 4.3.1.) with the help of FactoMineR
and Factoshiny packages (Vaissie et al. 2021).

SSR data analysis. Using the 100 bp DNA ladder
as a reference size, the sizes of the amplified frag-
ments were scored. Population structure analysis
was constructed using Bayesian clustering method
in Structure (Ver. 2.3.4) (Pritchard et al. 2000). The
length of the burn in period and Markov Chain Monte
Carlo (MCMC) were set at 1 00 000 iterations (Evanno
et al. 2005). To have accurate information, 10 runs
for each K value ranging from 1 to 10. The K value
was estimated based on the method given by Evanno
etal. (2005) using STRUCTURE harvestor programme
(Earl &Von Holdt 2012).

Genetic dissimilarity and cluster analysis based
on UPGMA. The obtained data was analysed using
dissimilarity-based methods, followed by cluster
analysis based on the taxonomic distance matrix using
the unweighted pair group method with arithmetic
mean (UPGMA). A dendrogram was created based
on the genetic distance matrix using the DARwin
software (Dissimilarity Analysis and Representation,
Ver. 6, Apple Inc., 2000).

Polymorphism information content and Shan-
non diversity index. The polymorphism information
content (PIC) value was determined using a formula
developed by Powell et al. (1997).

PIC =1 - 3Pi?

where:
Pi —the frequency of the i" locus, summed across all loci
and lines.
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PIC values, which range from 0 (indicating mono-
morphism) to 1 (indicating high discriminative power
with many alleles of equal and low frequency), were
estimated for each profile across 37 rice genotypes.
The Shannon diversity index (H) (Lewontin 1972) was
calculated to determine the alleles present at each
SSR locus for each individual, as given below:

H= —X"| PixIn(Pi)

where:
Pi —the relative abundance of allele i;
n — the total number of alleles at the locus.

The analysis was done by using MS EXCEL.

Single marker analysis. The association between
the traits and the SSR markers was done based on the
general linear statistical model using the software
R studio (Ver. 4.3.1) using the Agricolae package
(de Mendiburu 2019). The genotypic data and pheno-
typic data were used for the analysis. The marker-trait
association was made significant when P < 0.01. The
phenotypic variation (R*) explained by the marker
was estimated using R software (Ver. 4.3.1) using the
Agricolae package (de Mendiburu 2019)

RESULTS AND DISCUSSION

The in vitro screening of rice landraces in the
seedling stage using PEG-6000 cause drought stress
by obstructing the movement of water inside the cell
membrane by lowering the water potential (Adkins
etal 1995). Hence, in this study, four concentrations
of PEG-6000 viz., -2, -4, —6 and —8 bars were used
and a concentration of —6 bars was optimised based
on 50% germination (Table 2) using probit analysis
(Figure 1). Root length for the three tolerant checks
viz., Apo, Wayreram, Anna (R) 4 was higher than
two susceptible checks viz., IR 64 and Jaya. This
shows that root morphology plays an important role

in drought conditions (Pepe et al. 2022). Seed germi-
nation is managed by several enzymes and decreasing
the osmotic potential disrupts the enzyme activity.
This results in a reduction of germination potential.
Moreover, seeds require water for imbibitions, but
increasing the PEG-6000 concentration lowers the
water imbibitions and subsequently reduces the en-
zyme activity (Mahpara et al. 2022). Earlier studies
have observed increased osmotic potential resulted
in decreased seed germination in crops as well as in
weed crops (Farooq et al. 2019). Subsequently, 100 rice
landraces were used for screening of drought tolerance
using optimised concentration at room temperature.
The Seedling vigour index is the key trait for select-
ing better performing genotypes in terms of drought
tolerance (Gupta 1993). The impact of elevated lev-
els of PEG-6000 on seed germination was assessed
to ascertain the water deficit tolerance of different
rice genotypes (Islam et al. 2018). The vigour in-
dex, which broadly depends on germination % and
seedling length, is necessary to select drought toler-
ant genotypes (Diwan et al. 2013). Germination %
shows a negative trend with PEG-6000 concentration.

1.0 |=
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Figure 1. Probit analysis using germination % depicting
dose-response curve for optimization of polyethylene
glycol-6000 (PEG-6000) concentration

Table 2. Mean performance of tolerant and susceptible checks at —6 bar concentration (polyethylene glycol-6000)

Germination Shoot length Root length No. of Secondary Fresh welght Dry welght Vigour

Genotypes .
(%) (cm) roots (mg) index

Apo 60 3.36 5.50 5 180 90 201.6
‘Wayreram 60 2.44 4.02 5 150 75 146.4
Anna (R) 4 50 2.50 5.54 4 160 84 125
IR 64 20 1.52 1.80 3 123 42 30.4
Jaya 20 2.00 2.50 2 110 35 40
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Table 3. List of 32 rice genotypes selected for further analyses based on germination % and vigour index

S. No. Accession No. S. No Accession No. S. No Accession No. S. No Accession No.
1 IRGCI93 11 IRGC381 21 IRGC487 31 IRGC540
2 IRGC95 12 IRGC403 22 IRGC493 32 IRGC542
3 IRGC108 13 IRGC411 23 IRGC495

4 IRGC109 14 IRGC437 24 IRGC508

5 IRGC121 15 IRGC445 25 IRGC509

6 IRGC129 16 IRGC448 26 IRGC516

7 IRGC146 17 IRGC461 27 IRGC518

8 IRGC158 18 IRGC466 28 IRGC527

9 IRGC177 19 IRGC467 29 IRGC533

10 IRGC291 20 IRGC486 30 IRGC535

Based on 50% germination and vigour index, a total of
32 genotypes were selected as seedling stage drought
tolerant genotypes (Table 3). These 32 genotypes had
satisfactory performance, achieving a 50% germina-
tion rate, allowing for the observation of other traits.
The remaining drought susceptible genotypes failed
to reach the 50% germination and did not survive.
The analysis of variance revealed significant ge-
netic variation among the genotypes for all the traits
studied, explaining the genetic heterogeneity among
them, and Tukey’s post hoc analysis indicated sig-
nificant variation among the treatments (Table 4).
The germination % expressed significant differ-
ences among the genotypes under drought stress
conditions. Maximum germination % of 90% was
observed by eleven genotypes viz., IRGC93, IRGC146,
IRGC291, IRGC467, IRGC486, IRGC487, IRGC509,
IRGC516, IRGC527, IRGC535 and IRGC542. In con-
trast, shoot and root length were notably reduced
under stress compared to control conditions. The
longest shoot length of 8.85 and 5.45 cm was observed
in IRGC109 under both control and stress condi-
tions, while IRGC177 had the shortest length. The

minimal difference in shoot length between control
and drought treatment was observed by IRGC516,
followed by IRGC488. Similarly, IRGC486 showed
the longest root length (8.1 cm) under stress, whereas
IRGC533 had the shortest (1.2 cm). The primary
reason for the inhibition of root emergence is the
reduction in the water potential gradient between
the seed’s external environment and the seed itself.
This reduction subsequently hampers seedling shoot
and root length (Sokoto & Muhammad 2014).
Secondary root development was affected upon
PEG-6000 treatment, with IRGC486 observed the
highest and IRGC542 the lowest number of roots.
IRGC486 was also observed to have a minimal dif-
ference in a number of secondary root developments
between non-stress and stress conditions. Fresh and
dry weights were significantly influenced by PEG-
6000 treatment, with IRGC509 showing the high-
est fresh weight and IRGC95 the lowest (Table 5).
IRGC445, IRGC467 and IRGC403 were observed
to have the highest dry weight, and IRGC95 had
the lowest. The genotype IRGC535 exhibited the
highest dry weight under non-stress conditions;

Table 4. Analysis of variance for different traits among the selected accessions with Tukey’s post hoc test

Shoot Root

No. of

Fresh Dry  Shoot/root Root/shoot

Sources Df Germination secondary Vigour
of variation (%) length Foots weight ratio index
Control 1 227035%  903.53* 682.67* 1110.4*  3.14* 0.07* 2.02% 4.43* 1133.24*
vs. stress

Genotypes 36 384.7* 4.91% 8.63* 9.99*  0.01* 0.01* 0.4* 0.75% 419.77%
Control vs. stress ;¢ 384.7* 1.94*  7.35% 6.92*  0.01* 0.01* 0.3* 0.60*  218.42*
x genotypes

Error 74 0.1 157  3.57 563 001 0.01 0.3 0.43 117.95

Df — degree of freedom; *significant at 0.05 level
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however, under stress conditions, it showed a lower
dry weight. This reduction in dry weight under low
soil moisture could be attributed to decreased leaf
area and photosynthesis rate (Zubarer et al. 2007).
In contrast, the genotype IRGC445 was observed
to retain leaf moisture content under drought stress,
suggesting it might have dehydration tolerance, which
allows the plants to maintain metabolic processes
despite low leaf water potential.

Notable differences were also seen in shoot/root
and root/shoot ratios between control and stress
conditions, with IRGC493 showing the highest shoot/
root ratio and IRGC291 the highest root/shoot ra-
tio under stress (Table 6). Similarly, Sobahan et al.
(2022) observed that BRRI dhan71 exhibited a lower
percentage of weight reduction in terms of both fresh
weight and dry weight under the PEG-6000 treatment
compared to the control. Conversely, BRRI dhan49
showed a higher percentage of weight reduction
compared to the control. The vigour index, calcu-
lated based on germination percentage and shoot
length, varied significantly among genotypes, with
IRGC486 recording the highest and IRGC403 the
lowest values. A similar reduction in germination %,
shoot length, root length, fresh weight, dry weight
and vigour index when the concentration of PEG-
6000 increases was observed by several researchers
in rice genotypes (Priya et al. 2022; Evamoni et al.
2023; Fatimah et al. 2023).

The principal component analysis on several traits
of different genotypes yielded three principal compo-
nents (PC) with more than one eigenvalues (Table 7).
Several studies reported more than one eigenvalue
in different crops viz. rice (Nachimuthu et al. 2015),
Blackgram (Ghafoor & Arshad 2008), wheat (Adilova
et al. 2020), barley (Enyew et al. 2019) and maize
(Hazif et al. 2015).

The first three principal components (PC1, PC2 and
PC3) explained 88.89% of total variability, and the
remaining principal components explained 11.11%
of the variability. The characters shoot length, root
length, number of secondary roots, fresh weight,
dry weight, shoot/root ratio and vigour index ob-
served positive loading in PC 1. The second PC was
positively affected by root length, fresh weight, dry
weight and root/shoot ratio, whereas shoot length,
root length, number of secondary roots, root/shoot
ratio and vigour index observed positive loading
factor in PC3 (Table 7). Traits clustering within di-
verse principal components might receive increased
emphasis in breeding endeavors owing to their ten-

dency to co-occur (Chakravorty et al. 2013). Hence,
the characters associated with the first three PCs
are more important for differentiating among the
genotypes (Ponsiva et al. 2019).

The screeplot explains the variation % between
eigen values and the principal components (Christina
etal. 2021). In this study, PC1 expressed 51.09% of the
variance with eigenvalue of 4.08 whereas, PC2 and
PC3 resulted in 24.92% and 12.88% of variance with
eigenvalue of 1.99 and 1.03 respectively (Figure 2).

The biplot describes the interaction between the
traits and the performance of genotypes linked to the
traits. The vector length shows the contribution
of the trait to total divergence (Kasanaboina et al.
2022), i.e., the longer the vector length, the more the
contribution of the trait towards divergence and vice
versa. Shoot length followed by a number of secondary
roots and vigour index expressed maximum vector
length depicting its total divergence (Figure 3). Under
drought stress, root growth is limited and enhances
secondary growth, whereas shoot growth is ceased
(Lipiec et al. 2013). An angle < 90° between each
vector indicates its positive relationship, whereas the
right-angled vector indicates that the traits are not
correlated to each other, and a wide-angle depicts
a negative relationship (Christina et al. 2021). Here,
except for shoot/root ratio and root/shoot ratio all the
traits vector had a positive relationship. The tolerant
checks were placed in the positive quadrant whereas,
the susceptible checks were observed under fourth
negative quadrant (Figure 3). The genotypes falling

Table 7. Eigenvalues, variability and factor loadings of the
first two principal components (PC) of principal compo-
nents analysis depicted on various traits of rice landraces

PC1 PC2 PC3
Parameter
Eigenvalue 4.08 1.99 1.03
% of variance 51.09 24.92 12.88
Cumulative (%) 51.09 76.02 88.90
Factor loadings
Shoot length 0.46 -0.17 0.15
Root length 0.39 0.32 0.31
No. of secondary roots 0.44 -0.08 0.14
Fresh weight 0.39 0.17 —-0.37
Dry weight 0.18 0.28 -0.78
Shoot/root ratio 0.01 —-0.60 -0.26
Root/shoot ratio -0.12 0.61 0.12
Vigour index 0.46 -0.11 0.10
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Figure 2. Scree plot diagram based on principal components
of 37 rice landraces

under the first quadrant viz. IRGC109, IRGC403,
IRGC448, IRGC461, IRGC466, IRGC486, IRGC508,
IRGC518, IRGC527 and IRGC535 are the drought
tolerant genotypes based on seedling shoot length,
number of secondary roots and vigour index. Based
on seedling root length, fresh weight and dry weight
the five genotypes viz. IRGC381, IRGC411, IRGC437,
IRGC445 and IRGC509 were found to perform better
under drought conditions. These identified genotypes

Variables — PCA

1.0- ‘
oot/shoot ratio
0.5- Root length (cm)
— Fresh weight (g)
x
<
3
:‘/ 0.0 ondary ropts
£
[a)
Shoot length {cm)
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Figure 3. Biplot depicting two principal components
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could be further evaluated under target production
environment for testing the stability for drought
tolerance and to evolve best pre-breeding drought
tolerant donors. A similar result of drought tolerance
in bread wheat cultivars based on the principal com-
ponent analysis was described by Bilgili et al. (2019).

To understand the knowledge of diversity among
the selected landraces. Population structure and
molecular diversity analyses were performed using
26 SSR markers exclusively on those germinated
32 genotypes. However, for comparative purposes,
both drought-tolerant and susceptible checks were
included. Model-based approach by STRUCTURE
for studying population structure was implemented
frequently by various researchers (Garris et al. 2005;
Jin et al. 2010; Courtois et al. 2012). The SSR markers
were selected based on the drought QTLs. As per
the log-likelihood LnP (D) and Evanno’s ad hoc
measure, AK expressed a high peak at an optimal
K value of 2 (AK=2). A higher AK value was cho-
sen with respect to a number of clusters (Evanno
et al. 2005) indicating that the genotypes could
be grouped into two subpopulations. As per the
Evano table output, the K = 2 was observed to be
the best based on a high AK value of 5.8. Genotypes
having > 0.80 were admitted as pure line popula-
tions, while those that were < 0.80 as admixtures
(Anandan et al. 2016a, b). Population structure
grouped the thirty-seven genotypes into two sub-
populations. Fifteen rice genotypes representing

PCA - Biplot

Rootighygot ratio |

13
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17 4 ur index |
*Shoot length (cm)
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(A) 6 AK = mean (|L"(K)|)/sd(L(K))

AK
w

(B)
1.00
0.80
0.60
0.40
0.20
0.00

40% of the population were assigned as subpopula-
tion 1 represented in green colour and the remain-
ing 22 genotypes were categorized as fifteen pure
genotypes and seven admixtured ones representing
60% were assigned as subpopulation 2 (red colour)
(Figure 4). The genotypes identified based on higher
shoot length, number of secondary roots and vigour
index was grouped under subpopulation 2 with few
admixture lines. The reason for the admixture may
be due to the diverse ancestral backgrounds with
different domestication process through which the
landraces have evolved. Jin et al. (2010) observed
seven subpopulations among 416 rice accessions.
Roy et al. (2016) identified two subpopulations
among 126 rice genotypes by population structure
analysis. The fixation index (Fst) of 0.13 for sub-
population 1 and 0.18 for subpopulation 2 indicates
moderate divergence between the two groups. The
allele frequency divergence is measured at 0.095
which is a measure of fixation index revealing that the
moderate divergence is not extremely pronounced.
The alpha value observed as 0.08 revealing 8% of the
population have admixture which indicates low level
of admixture. Pradhan et al. (2016) observed lower
alpha value among 240 rice germplasm which was
grouped into three subpopulations. In subpopula-
tion 1 and 2, the expected heterozygosity is 0.56 and
0.53 respectively, suggesting that approximately
50% of genotypes within the population have the
chance of being heterozygotes.

Figure 4. Population structure analysis of thirty seven rice
landraces: AK depicting the number of populations (A), bar
plot of the populations based on the membership fractions,
the genotypes with > 80% were assigned to corresponding
subgroups with others categorized as admixtures (B)

Green — population 1; red — population 2

All the markers produced polymorphism and result-
ed in a total of 115 alleles with an average of 4.42 al-
leles per marker. For each marker, the number of alleles
ranged from 2 to 9 alleles (Figure 5, 6). The highest
alleles were generated by the marker RM252. The
markers viz. RM302 (2), RM11928 (2), RM133 (2) and
RM212 (2) produced the fewest number of alleles.
Earlier studies observed number of alleles ranged
from 2 (RM19) to 7 (RM44) among Oryza rufipogon
population (Song et al. 2003). The amplified frag-
ments varied in size from 90 to 295 bp.

Polymorphic information content (PIC) describes
the frequency of each allele and represents the al-
lelic diversity (Ashraf et al. 2016). The PIC values
in this study ranged from 0.192 to 0.837 (Table 8),
with an average PIC value of 0.613 per primer. The
PIC value of > 0.5 is regarded as highly polymorphic,
and the SSR primers employed in this work showed
an average PIC value of 0.613, indicating that they
were highly informative (Serrote et al. 2020). The
SSR primer, RM252, revealed the highest (0.837) PIC
value, whereas the primer RM212 revealed the lowest
(0.19) (Figure 7). It was demonstrated that primers
that have fewer alleles revealed less gene variability
than those that observed more alleles, which revealed
more gene diversity (Islam et al. 2023). The markers
expressing more than 0.5 PIC value could be further
used for phylogenetic studies (Sakina et al. 2022).
Measures on the Shannon diversity index described
the heterozygous nature of the genotypes studied. The
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t'!ABC DE 123 4 56 7 8 9 101112 13 14 15 16 17 18 1920

RM 276

il.'[212223 24 25 26127 28 2930 3132711 2 3 4 5'6PFA'8 9 101112 13
= RM 276 RM 289

C DE 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32

RM 289

Figure 5. Screening of rice landrace using SSR markers using drought linked QTL SSR markers

L — 100bp ladder; A — Apo; B — Wayreram; C — Anna (R) 4; D — IR64; E — Jaya; 1 — IRGC93; 2 — IRGC95; 3 — IRGC108;
4 -IRGC109;5-IRGC121;6 — IRGC129; 7 - IRGC146; 8 — IRGC158; 9 — IRGC177; 10 — IRGC291; 11 — IRGC381; 12 — IRGC403;
13 — IRGC411; 14 — IRGC437; 15 — IRGC445;16 — IRGC448; 17 — IRGC461; 18 — IRGC466; 19 — IRGC467; 20 — IRGC486;
21 — IRGC487; 22 — IRGC493; 23 — IRGC495; 24 — IRGC508; 25 — IRGC509; 26 — IRGC516; 27 — IRGC518; 28 — IRGC527;
29 — IRGC533; 30 — IRGC535; 31 — IRGC540; 32 — IRGC542

index ranged between 0.34 for RM212 and 1.96 for  sent within the rice germplasm. Yang et al. (2021)
RM252 with a mean of 1.18. In this study, Shannon’s  studied the Shannon diversity index of 0.13 to 0.48,
information index served as an additional indicator =~ with a mean of 0.28 observed from a total of 48 SSR
highlighting the considerable genetic diversity pre- markers in rice while screening genotypes for several

K|
3 45 6 /"8 '9 10 1112 13 14 15 16 17 18 19 20

R 25

;'_E’; 2122 23 24 25 26 27 28 29 30 3132

RM 25

AB CDE 13 14 15 16 17 18 19 20 21 2223 2425 2627 2829 30 31 32

RM 413

Figure 6. Screening of identified rice landrace using drought linked QTL SSR markers

L — 100bp ladder; A — Apo; B — Wayreram; C — Anna (R) 4; D — IR64; E — Jaya; 1 — IRGC93; 2 — IRGC95; 3 — IRGC108;
4 -IRGC109; 5 - IRGC121; 6 —IRGC129;7 — IRGC146; 8 — IRGC158;9 — IRGC177; 10 — IRGC291; 11 — IRGC381; 12 — IRGC403;
13 — IRGC411; 14 — IRGC437; 15 — IRGC445; 16 — IRGC448; 17 — IRGC461; 18 — IRGC466; 19 — IRGC467; 20 — IRGC486;
21 — IRGC487; 22 — IRGC493; 23 — IRGC495; 24 — IRGC508; 25 — IRGC509;26 — IRGC516; 27 — IRGC518; 28 — IRGC527;
29 — IRGC533; 30 — IRGC535; 31 — IRGC540; 32 — IRGC542
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Table 8. List of SSR markers used for molecular diversity analysis

S No, Marker Forward and reverse "fm Chromosome prrl:) edcutss illljenrl;(;; Reference

name sequence (°C) No. size (bp) value index

Lm0 Cpcercerrromacaccaara 0 1 18 o o RGO
: RMIpccscecaaceerma 0 7 M0 om 1 OGN
RS olCcatcoaccacTaea S 6 M9 om0 s R
¢ ORMS claacTICoAAG O 0 18 oe 13 SN0,
s CClccAteaamcoaTerie 9 8 e os 1o PEEE
o mue GGceaTasacoatiertes 2 5 0 0% 07 gulehy
TomeR gcmGaecconcarcs 0 4 e om s PEAE
s Qeccoamcemeriaree 0 1 U6 om e TG0,
o RMIS Geccenrcccatcataarere 0 P P 08 13 (GGl
RMIS GlCincarmoracccccss P G M8 08 17 L
uomes SCgidecearaccre 0 0 X2 08 13 o,
2ORMBLgeccrreancaricaatc  © @ M 075 we KGIE
RS pcecaeateancagermoe  © 1 10 om0 1 G
ORMIcciGaaaaTaaanTaCTIGe L 198 02 os S
s R Goorrcarecrreacaacac S B0 07 1 G
o RMISClCGaaacoaacAcaace P L 19 e NGRO
vooms COGiaaateagraceres 0 0 1 0s 107 TG
18 RMIGH GoiGccTAATGCTACAKTTCT 5 Ms o7 13 %0,
omee Ciciiancateerioe P 2 18 0e 1o (GO
MR lCaaccoasaetarere 0 12 10 oswos
21 RMI1928 TAAACCAGATCATGCCCTCATCC 55 1 280 0.60 0.88 Renuprasath

AGCAGTAACGGTTGGGTACTTGG

et al. (2023)
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Marker Forward and reverse Tm Chromosome Expected Sl.lannf) "
S. No. \ product diversity =~ Reference
name sequence (°C) No. . value .
size (bp) index
GAGCTCCATCAGCCATTCAG Subashri
22 KM 1GAGTGCTGCTGCGACT > ! He 051085 il (2009)
TTGCAATTAATTCGATCTCC Mohanty
2 RMBTS2 GCAGATCGATTCGTTAGTTC ’ 138 056095 oal (2001)
TTGGATTGTTTTGCTGGCTCGC Noryan
24 M1 2 31 .
RM133 GGAACACGGGGTCGGAAGCGAC 60 6 30 0.3 0-56 et al. (2021)
GAAACCACCACACCTCACCG Bhattarai
2 RMIS2 CCGTAGACCTTCTTGAAGTAG O ’ P00 e 2019)
2%  RM212 CCACTTTCAGCTACTACCAG 56 1 117 0.19 0.34 Salam

CACCCATTTGTCTCTCATTATG

et al. (2017)

Tm — melting temperature; PIC — polymorphism information content

agronomic traits. Hence, the allelic diversity meas-
ures help in further dissecting the overall variations
present in the population.

The dendrogram based on dissimilarity matrix
by UPGMA method grouped the genotypes into
seven clusters on the basis of SSR marker alleles
(Figure 8). High dissimilarity was found between
the genotypes viz. IRGC93 & IRGC437; IRGC509
& Jaya; IRGC509 & IRGC93; IRGC509 &IRGC129
(0.88). The lowest dissimilarity matrix was found

RG212

between IR64 & Anna (R) 4 (0.27). Cluster analysis
showed a broad genetic background among selected
landraces (Pascual et al. 2020). Among the seven
clusters, the highest number of genotypes was present
in cluster V with 13 genotypes (IRGC466, IRGC448,
IRGC445, IRGC461, IRGC411, IRGC146, IRGC437,
IRGC381, IRGC177, IRGC125, IRGC291, IRGC403
and IRGC158) followed by the cluster VI with eight
genotypes (Apo, Wayreram, Anna (R) 4, IRGC121,
IRGC108, IRGC109, IRGCY93 and IRGCY5). Only one
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Figure 7. Polymorphic information content (PIC) of 26 SSR markers utilized in this study
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genotype, IRGC486, having a positive relationship
with shoot length and vigour index was observed
in cluster III.

Moreover, a marker trait association study con-
ducted among the germplasm collection could
be useful for the identification of molecular markers
linked to the particular trait of interest (Pradhan
et al. 2016). The marker trait association depends
on the genetic distance between the genotypes and
the strength of linkage disequilibrium between
the markers (Ashfaq et al. 2014). A total of seven
SSR markers were significantly associated with
all the studied traits in general linear model at
P < 0.05 (Table 9). Marker trait association was
tested between the studied SSR markers and the
traits studied. The markers viz. RM246, RM302,
RM252, RM219, RM251, and RM486 were signifi-
cantly associated with shoot length, root length,
number of secondary roots, dry weight, shoot/root
ratio and root/shoot ratio, respectively, with phe-
notypic variance ranging from 11.57% to 32.71%.
The marker RM302 expresses a pleiotropic effect
governing root length and root/shoot ratio. Ashfaq
et al. (2014) observed RM302 to be associated with
root traits due to strong linkage disequilibrium
in rice. Likewise, several markers were reported
to be associated with different agronomic traits
with phenotypic variance ranging from 11% to 32 %,

Figure 8. Dendrogram using unweighted pair group method
with arithmetic mean (UPGMA) method for 37 genotypes

IR64

IRGC467

IRGC466
IRGC448

IRGC445

IRGC461

IRGC146

5

IRGC411

respectively. For example, RM215 is associated
with decreased plant height under drought stress
in rice (Wang et al. 2016). Similarly, RM152 was
associated with drought score in rice (Ramchander
et al. 2016).

CONCLUSION

Drought stress significantly affects the sensitiv-
ity of rice genotypes during seed germination. The
observation revealed that increasing PEG-6000
concentrations had an impact on seed germination
and seedling growth in rice genotypes, representing
drought stress. Consequently, —6 bars emerged as the
optimized dose among all concentrations, enabling
the screening of genotypes based on probit analysis.
The identified accessions viz. IRGC109, IRGC403,
IRGC448, IRGC461, IRGC466, IRGC486, IRGC508,
IRGC518, IRGC527 and IRGC535 expressing positive
relationship with shoot length, number of secondary
roots and vigor index. The observation of molecular
diversity among the identified accessions revealed
greater divergence, and the marker RM252 with the
highest PIC value ought to be used further in drought
tolerant studies in rice. Significant associations were
observed between the markers RM246, RM302,
RM252, RM219, RM251, and RM486 in the respec-
tive traits, viz. shoot length, root length, number
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Table 9. Association of SSR markers with respective traits

Trait S. No. Trait Marker Chromosome No. Pvalue R? (%)
1 shoot length RM413 5 0.07 11.24
RM218 3 0.38 15.05

RM246 1 0.03 12.63

2 root length RM252 4 0.06 21.23
RM251 3 0.13 12.87

RM486 1 0.19 16.89

RM302 1 0.04 11.57

RM404 8 0.14 12.40

3 number of secondary RM252 4 0.04 24.64
roots RM251 3 0.23 25.49

RM164 5 0.17 13.79

4 fresh weight RM252 4 0.23 32.03
RM106 2 0.06 13.93

RM434 9 0.10 16.62

5 dry weight RM276 6 0.07 18.01
RM289 5 0.28 20.75

RM252 4 0.14 14.67

RM219 9 0.04 17.68

RM495 1 0.07 10.94

RM434 9 0.13 15.43

6 shoot/root ratio RM252 4 0.14 14.55
RM243 1 0.46 16.17

RM251 3 0.01 32.71

RM486 1 0.12 19.55

RM302 1 0.02 16.45

RM262 2 0.09 12.92

7 root/shoot ratio RM252 4 0.30 29.37
RM243 1 0.21 22.95

RM486 1 0.02 19.79

RM302 1 0.02 15.23

RM262 2 0.11 12.03

8 vigor index RM246 1 0.07 14.42

of secondary roots, dry weight, shoot/root ratio, REFERENCES
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