Czech J. Genet. Plant Breed., 2023, 59(3):119-132 | DOI: 10.17221/82/2022-CJGPB

Whole genome identification of CBF gene families and expression analysis in Vitis vinifera L.Original Paper

Xiang Fang1,2, Yiling Lin1,2, Chun Chen1,2, Tariq Pervaiz1,2, Xicheng Wang3, Hefei Luo1,2, Jinggui Fang1,2, Lingfei Shangguan1,2
1 Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
2 Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, P.R. China
3 Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P.R. China

The CBF (C-repeat binding factors) genes play important roles in response to abiotic stress and environmental changes. In the present study, a total of 18 CBF genes were identified from a grapevine. Their domains, phylogenetics, and collinearity were analysed. The results revealed, that 18 VviCBF genes were distributed on 10 chromosomes unevenly in the grape genome. Promoter data analysis showed that the CBF gene has many cis-acting elements related to plant growth and development, light response, hormone, and abiotic stress response. We found that six VviCBF genes including, VviCBF5, VviCBF13, VviCBF14, VviCBF15, VviCBF16, and VviCBF18 differentially expressed during fruit developmental stages. Furthermore, four VviCBF genes including, VviCBF1, VviCBF3, VviCBF6, and VviCBF11 were expressed at the early stage of bud dormancy, whereas, nine VviCBF genes were expressed at the bud dormancy-breaking stage. Additionally, various VviCBFs genes respond to different abiotic and biotic stress. These findings will lay a foundation for further study of the CBF genes in bud dormancy, downy mildew, and abiotic and biotic stresses.

Keywords: biotic and abiotic stresses; bud dormancy; CBF; fruit development; grape

Received: October 3, 2022; Accepted: December 16, 2022; Prepublished online: February 23, 2023; Published: June 12, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Fang X, Lin Y, Chen C, Pervaiz T, Wang X, Luo H, et al.. Whole genome identification of CBF gene families and expression analysis in Vitis vinifera L. Czech J. Genet. Plant Breed. 2023;59(3):119-132. doi: 10.17221/82/2022-CJGPB.
Download citation

Supplementary files:

Download fileFang_ESM.pdf

File size: 498.37 kB

References

  1. Akhtar M., Jaiswal A., Taj G., Jaiswal J.P., Qureshi M.I., Singh N.K. (2012): DREB1/CBF transcription factors: Their structure, function, and role in abiotic stress tolerance in plants. Journal of Genetics, 91: 385-395. Go to original source... Go to PubMed...
  2. An J.P., Wang X.F., Zhang X.W., Xu H.F., Bi S.Q., You C.X., Hao Y.J. (2020): An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnology Journal, 18: 337-353. Go to original source... Go to PubMed...
  3. Artlip T.S., Wisniewski M.E., Bassett C.L., Norelli J.L. (2013): CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiology, 33: 866-877. Go to original source... Go to PubMed...
  4. Bailey T.L., Johnson J., Grant C.E., Noble W.S. (2015): The MEME suite. Nucleic Acids Research, 43: W39-W49. Go to original source... Go to PubMed...
  5. Balogh E., Halász J., Soltész A., Erös-Honti Z., Gutermuth Á., Szalay L., Höhn M., Vágújfalvi A., Galiba G., Hegedüs A. (2019): Identification, structural and functional characterization of dormancy regulator genes in apricot (Prunus armeniaca L.). Frontiers in Plant Science, 10: 402. Go to original source... Go to PubMed...
  6. Ban Q., Liu G., Wang Y. (2011): A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. Journal of Plant Physiology, 168: 449-458. Go to original source... Go to PubMed...
  7. Cao P.B., Azar S., SanClemente H., Mounet F., Dunand C., Marque G., Marque C., Teulières C. (2015): Genome-wide analysis of the AP2/ERF family in eucalyptus grandis: An intriguing over-representation of stress-responsive DREB1/CBF genes. PLoS ONE, 10: e0121041. Go to original source... Go to PubMed...
  8. Charfeddine M., Charfeddine S., Bouaziz D., Messaoud R.B., Bouzid R.G. (2017): The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell, Tissue and Organ Culture, 128: 521-541. Go to original source...
  9. Chen C., Chen H., Zhang Y., Thomas H.R., Frank M.H., He Y., Xia R. (2020): TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13: 1194-1202. Go to original source... Go to PubMed...
  10. Erpen L., Devi H.S., Grosser J.W., Dutt M. (2018): Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture, 132: 1-25. Go to original source...
  11. Gong P., Kang J., Sadeghnezhad E., Bao R., Ge M., Zhuge Y., Shangguan L., Fang J. (2022): Transcriptional profiling of resistant and susceptible cultivars of grapevine (Vitis L.) reveals hypersensitive responses to Plasmopara viticola. Frontiers in Microbiology, 13: 846504. Go to original source... Go to PubMed...
  12. Guan L., Haider M.S., Khan N., Nasim M., Jiu S., Fiaz M., Zhu X., Zhang K., Fang J. (2018): Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. International Journal of Molecular Sciences, 19: 4019. Go to original source... Go to PubMed...
  13. Guan Y., Liu S., Wu W., Hong K., Li R., Zhu L., Liu Y., Lu Y., Chen J., Yang L., Shi J. (2021): Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in Liriodendron chinense. Journal of Forestry Research, 32: 2531-2543. Go to original source...
  14. Haake V., Cook D., Riechmann J.L., Pineda O., Thomashow M.F., Zhang J.Z. (2002): Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 130: 639-648. Go to original source... Go to PubMed...
  15. Haider M.S., Zhang C., Kurjogi M.M., Pervaiz T., Zheng T., Zhang C., Lide C., Shangguan L., Fang J. (2017): Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis. Scientific Reports, 7: 13134. Go to original source... Go to PubMed...
  16. Hu Z., Ban Q., Hao J., Zhu X., Cheng Y., Mao J., Lin M., Xia E., Li Y. (2020): Genome-wide characterization of the C-repeat Binding Factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis). Frontiers in Plant Science, 11: 921. Go to original source... Go to PubMed...
  17. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2006): Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 47: 141-153. Go to original source... Go to PubMed...
  18. Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. (1998): Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280: 104-106. Go to original source... Go to PubMed...
  19. Kendall S.L., Hellwege A., Marriot P., Whalley C., Graham I.A., Penfield S. (2011): Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell, 23: 2568-2580. Go to original source... Go to PubMed...
  20. Kidokoro S., Watanabe K., Ohori T., Moriwaki T., Maruyama K., Mizoi J., Myint Phyu Sin Htwe N., Fujita Y., Sekita S., Shinozaki K., Yamaguchi-Shinozaki K. (2015): Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant Journal, 81: 505-518. Go to original source... Go to PubMed...
  21. Lee S.C., Lim M.H., Yu J.G., Park B.S., Yang T.J. (2012): Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. Plant Physiology and Biochemistry, 61: 142-152. Go to original source... Go to PubMed...
  22. Leng X., Jia H., Sun X., Shangguan L., Mu Q., Wang B., Fang J. (2015): Comparative transcriptome analysis of grapevine in response to copper stress. Scientific Reports, 5: 17749. Go to original source... Go to PubMed...
  23. Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouzé P., Rombauts S. (2002): PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30: 325-327. Go to original source... Go to PubMed...
  24. Li W., Chen Y., Ye M., Lu H., Wang D., Chen Q. (2020): Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum. BMC Evolutionary Biology, 20: 142. Go to original source... Go to PubMed...
  25. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. (1998): Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391-1406. Go to original source...
  26. Maibam P., Nawkar G.M., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. (2013): The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. International Journal of Molecular Sciences, 14: 11527-11543. Go to original source... Go to PubMed...
  27. Matus J.T., Aquea F., Arce-Johnson P. (2008): Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology, 8: 83. Go to original source... Go to PubMed...
  28. Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. (2020): IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37: 1530-1534. Go to original source... Go to PubMed...
  29. Nakano T., Suzuki K., Fujimura T., Shinshi H. (2006): Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140: 411-432. Go to original source... Go to PubMed...
  30. Niu Q., Li J., Cai D., Qian M., Jia H., Bai S., Hussain S., Liu G., Teng Y., Zheng X. (2016): Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. Journal of Experimental Botany, 67: 239-257. Go to original source... Go to PubMed...
  31. Park S., Shi A., Mou B. (2020): Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce. Scientific Reports, 10: 5733. Go to original source... Go to PubMed...
  32. Qin F., Sakuma Y., Li J., Liu Q., Li Y.-Q., Shinozaki K., Yamaguchi-Shinozaki K. (2004): Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology, 45: 1042-1052. Go to original source... Go to PubMed...
  33. Rohde A., Howe G.T., Olsen J.E., Moritz T., Van Montagu M., Junttila O., Boerjan W. (2000): Jain S.M. (ed.): Molecular Biology of Woody Plants. Dordrecht, Springer: 89-134. Go to original source...
  34. Shan D.P., Huang J.G., Yang Y.T., Guo Y.H., Wu C.A., Yang G.D., Gao Z., Zheng C.C. (2007): Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytologist, 176: 70-81. Go to original source... Go to PubMed...
  35. Shangguan L., Mu Q., Fang X., Zhang K., Jia H., Li X., Bao Y., Fang J. (2017): RNA-sequencing reveals biological networks during table grapevine ('Fujiminori') fruit development. PLoS ONE, 12: e0170571. Go to original source... Go to PubMed...
  36. Shi Y., Tian S., Hou L., Huang X., Zhang X., Guo H., Yang S. (2012): Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell, 24: 2578-2595. Go to original source... Go to PubMed...
  37. Stockinger E.J., Gilmour S.J., Thomashow M.F. (1997): Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America, 94: 1035-1040. Go to original source... Go to PubMed...
  38. Tillett R.L., Wheatley M.D., Tattersall E.A., Schlauch K.A., Cramer G.R., Cushman J.C. (2012): The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnology Journal, 10: 105-124. Go to original source... Go to PubMed...
  39. Wan R., Song J., Lv Z., Qi X., Han X., Guo Q., Wang S., Shi J., Jian Z., Hu Q., Chen Y. (2022): Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation. Genes, 13: 895. Go to original source... Go to PubMed...
  40. Wisniewski M., Norelli J., Artlip T. (2015): Overexpression of a peach CBF gene in apple: A model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Frontiers in Plant Science, 6: 00085. Go to original source... Go to PubMed...
  41. Wisniewski M., Norelli J., Bassett C., Artlip T., Macarisin D. (2011): Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta, 233: 971-983. Go to original source... Go to PubMed...
  42. Wu J., Folta K.M., Xie Y., Jiang W., Lu J., Zhang Y. (2017): Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis. Protoplasma, 254: 239-251. Go to original source... Go to PubMed...
  43. Xiao H., Siddiqua M., Braybrook S., Nassuth A. (2006): Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell and Environment, 29: 1410-1421. Go to original source... Go to PubMed...
  44. Xiao H., Tattersall E.A., Siddiqua M.K., Cramer G.R., Nassuth A. (2008): CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell and Environment, 31: 1-10. Go to original source... Go to PubMed...
  45. Xie Y., Chen P., Yan Y., Bao C., Li X., Wang L., Shen X., Li H., Liu X., Niu C., Zhu C., Fang N., Shao Y., Zhao T., Yu J., Zhu J., Xu L., van Nocker S., Ma F., Guan Q. (2018): An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist, 218: 201-218. Go to original source... Go to PubMed...
  46. Xu W., Zhang N., Jiao Y., Li R., Xiao D., Wang Z. (2014): The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Molecular Biology Reports, 41: 5329-5342. Go to original source... Go to PubMed...
  47. Zhang H., Gong Y., Sun P., Chen S., Ma C. (2022): Genome-wide identification of CBF genes and their responses to cold acclimation in Taraxacum kok-saghyz. PeerJ, 10: e13429. Go to original source... Go to PubMed...
  48. Zhang X., Fowler S.G., Cheng H., Lou Y., Rhee S.Y., Stockinger E.J., Thomashow M.F. (2004): Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant Journal, 39: 905-919. Go to original source... Go to PubMed...
  49. Zhang Y., Gao M., Singer S.D., Fei Z., Wang H., Wang X. (2012): Genome-wide identification and analysis of the TIFY gene family in grape. PLoS ONE, 7: e44465. Go to original source... Go to PubMed...
  50. Zhao T., Liang D., Wang P., Liu J., Ma F. (2012): Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Molecular Genetics and Genomics, 287: 423-436. Go to original source... Go to PubMed...
  51. Zhu X., Li X., Jiu S., Zhang K., Wang C., Fang J. (2018): Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. Royal Society Open Science, 5: 172253. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.