Czech J. Genet. Plant Breed., 2025, 61(1):43-49 | DOI: 10.17221/107/2024-CJGPB

The insertion of an ancestral gene in Nicotiana tabacum plants reduces free radicals during saline irrigationOriginal Paper

Claudia Marissa Calderón Torres1*, Victoria Abril Mancilla Galván1, Miguel Murguía Romero2
1 Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
2 Unidad de Informática para la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México

Transgenic organisms modified with ancestral genes for nitrogen metabolism are rare. Previously, it was reported that genetically modified Nicotiana tabacum with the ARO4 gene of aromatic amino acid synthesis from the yeast Debaryomyces hansenii increases its growth during moderate salt stress. In this investigation, it was explored if the changes in the expression of the gene DhARO4 in Nicotiana tabacum, during saline irrigation, are related to the chlorophyll content and the total reactive oxygen species production. Seedlings of transgenic and wild type Nicotiana tabacum germinated in standard conditions were divided into two irrigation groups, with 100 mM of NaCl and with tap water; and, after 50 days, in the non-senescent adult leaves of the plants, the total chlorophyll a and b and the total chlorophyll content were determined by spectrophotometry and the reactive oxygen species production (•OH, 1O2, H2O2) was quantified by a 2',7'-dichlorodihydrofluorescein assay. The expression of the DhARO4 gene was verified with a salt shock of 100 mM of NaCl for 24 hours in the transgenic and wild type plants in the tap water irrigation group. The DhARO4 gene transcript increased (P < 0.05) in the transgenic plant; meanwhile, the average concentration of chlorophyll a increased (P < 0.05), and the average production of reactive oxygen species decreased (P < 0.05).

Keywords: gene DhARO4; gene expression; genetically modified organisms; salt stress; tobacco plant

Received: September 4, 2024; Revised: November 29, 2024; Accepted: December 3, 2024; Prepublished online: December 19, 2024; Published: January 14, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Calderón Torres CM, Mancilla Galván VA, Murguía Romero M. The insertion of an ancestral gene in Nicotiana tabacum plants reduces free radicals during saline irrigation. Czech J. Genet. Plant Breed. 2025;61(1):43-49. doi: 10.17221/107/2024-CJGPB.
Download citation

References

  1. Al-Mohammad M.H., Al-Taey D.K. (2019): Effect of tyrosine and sulfur on growth, yield and antioxidant compounds in arugula leaves and seeds. Research on Crops, 20: 116-120. Go to original source...
  2. Amraee L., Rahmani F. (2020): Modified CTAB protocol for RNA extraction from Lemon balm (Melissa officinalis L.). Acta Agriculturae Slovenica, 115: 53-57. Go to original source...
  3. Atteya A.K.G., El-Serafy R.S., El-Zabalawy K.M., Elhakem A., Genaidy E.A.E. (2022): Exogenously supplemented proline and phenylalanine improve growth, productivity, and oil composition of salted moringa by up-regulating osmoprotectants and stimulating antioxidant machinery. Plants (Basel), 11: 1553. Go to original source... Go to PubMed...
  4. Bakó A., Gell G., Zámbo A., Spitkó T., Pók I., Balázs E. (2013): Monitoring transgene expression levels in different genotypes of field grown maize (Zea mays L.). South African Journal of Botany, 84: 6-10. Go to original source...
  5. Calderón-Torres M., Peña A., Thomé P.E. (2006): DhARO4, an amino acid biosynthetic gene, is stimulated by high salinity in Debaryomyces hansenii. Yeast (Chichester, England), 23: 725-734. Go to original source... Go to PubMed...
  6. Calderón-Torres M., Castro D.E., Montero P., Peña A. (2011): DhARO4 induction and tyrosine nitration in response to reactive radicals generated by salt stress in Debaryomyces hansenii. Yeast (Chichester, England), 28: 733-746. Go to original source... Go to PubMed...
  7. Calderón-Torres M., López-Estrada E., Romero-Maldonado A., Rosales-Mendoza S., Murguía-Romero M. (2019): The heterologous expression of the Debaryomyces hansenii DhARO4 gene in Nicotiana tabacum improves growth yield, even after inhibition by saline stress. Revista Mexicana de Ingeniería Química, 18: 729-736. Go to original source...
  8. D'Amico S., Claverie P., Collins T., Georlette D., Gratia E., Hoyoux A., Meuwis M.A., Feller G., Gerday C. (2002): Molecular basis of cold adaptation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357: 917-925. Go to original source... Go to PubMed...
  9. DasSarma S., DasSarma P. (2015): Halophiles and their enzymes: Negativity put to good use. Current Opinion Microbiology, 25: 120-126. Go to original source... Go to PubMed...
  10. Dorta E., Martín-Núñez E., Ferri C.M., López-Alarcón C., Navarro-González J.F (2018): P-209 - Scavenging activity of free and peptide tryptophan and tyrosine residues towards AAPH-derived free radicals. Free Radical Biology and Medicine, 120 (Supplement 1): S108. Go to original source...
  11. Esmaeili N., Shen G., Zhang H. (2022): Genetic manipulation for abiotic stress resistance traits in crops. Frontiers in Plant Science, 13: 1011985. Go to original source... Go to PubMed...
  12. Gülçin I. (2007): Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-dopa. Amino Acids, 32: 431-438. Go to original source... Go to PubMed...
  13. Hajihashemi S., Jahantigh O., Alboghobeish S. (2022): The redox status of salinity-stressed Chenopodium quinoa under salicylic acid and sodium nitroprusside treatments. Frontiers in Plant Science, 13: 1030938. Go to original source... Go to PubMed...
  14. Hempel S.L., Buettner G.R., O'Malley Y.Q., Wessels D.A., Flaherty D.M. (1999): Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Biology and Medicine, 27: 146-159. Go to original source... Go to PubMed...
  15. Jin J., Li K., Qin J., Yan L., Wang S., Zhang G., Wang X., Bi Y. (2021): The response mechanism to salt stress in Arabidopsis transgenic lines over-expressing of GmG6PD. Plant Physiology and Biochemistry, 162: 74-85. Go to original source... Go to PubMed...
  16. Light S.H., Anderson W.F. (2013): The diversity of allosteric controls at the gateway to aromatic amino acid biosynthesis. Protein Science: A Publication of the Protein Society, 22: 395-404. Go to original source... Go to PubMed...
  17. Lu C., Li L., Liu X., Chen M., Wan S., Li G. (2023): Salt stress inhibits photosynthesis and destroys chloroplast structure by downregulating chloroplast development-related genes in Robinia pseudoacacia seedlings. Plants, 12: 1283. Go to original source... Go to PubMed...
  18. Lu X., Ma L., Zhang C., Yan H., Bao J., Gong M., Wang W., Li S., Ma S., Chen B. (2022): Grapevine (Vitis vinifera) responses to salt stress and alkali stress: Transcriptional and metabolic profiling. BioMed Central Plant Biology, 22: 528. Go to original source... Go to PubMed...
  19. Maeda H.A., Fernie A.R. (2021): Evolutionary history of plant metabolism. Annual Review Plant Biology, 72: 185-216. Go to original source... Go to PubMed...
  20. Moosmann B., Behl C. (2000): Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. European Journal of Biochemistry, 267: 5687-5692. Go to original source... Go to PubMed...
  21. Pfaffl M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29: e45. Go to original source... Go to PubMed...
  22. Porra R.J., Thompson W.A., Kriedemann P.E. (1989): Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975: 384-394. Go to original source...
  23. Radi R. (2004): Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences of the United States of America, 101: 4003-4008. Go to original source... Go to PubMed...
  24. Roy S.J., Negrão S., Tester M. (2014): Salt resistant crop plants. Current Opinion Biotechnology, 26: 115-124. Go to original source... Go to PubMed...
  25. Taïbi K., Taïbi F., Abderrahim L.A., Ennajah A., Belkhodja M., Mulet J.M. (2016): Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105: 306-312. Go to original source...
  26. Tzin V., Galili G. (2010): New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3: 956-972. Go to original source... Go to PubMed...
  27. Webby C.J., Baker H.M., Lott J.S., Baker E.N., Parker E.J. (2005): The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis reveals a common catalytic scaffold and ancestry for type I and type II enzymes. Journal Molecular Biology, 354: 927-939. Go to original source... Go to PubMed...
  28. Weiss M.C., Preiner M., Xavier J.C., Zimorski V., Martin W.F. (2018): The last universal common ancestor between ancient Earth chemistry and the onset of genetics. Public Library of Science Genetics, 14: e1007518. Go to original source... Go to PubMed...
  29. Yokoyama R., Kleven B., Gupta A., Wang Y., Maeda H.A. (2022): 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Current Opinion Plant Biology, 67: 102219. Go to original source... Go to PubMed...
  30. Zahra N., Al Hinai M.S., Hafeez M.B., Rehman A., Wahid A., Siddique K.H.M., Farooq M. (2022): Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178: 55-69. Go to original source... Go to PubMed...
  31. Zou X., Amrit B.K., Rauf A., Saeed M., Al-Awthan Y.S., Al-Duais A.M., Bahattab O., Hamayoon Khan M., Suleria H.A.R. (2021): Screening of polyphenols in tobacco (Nicotiana tabacum) and determination of their antioxidant activity in different tobacco varieties. American Chemical Society Omega, 6: 25361-25371. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.