Czech J. Genet. Plant Breed., 2025, 61(3):138-150 | DOI: 10.17221/25/2025-CJGPB

Impact of nitric oxide on sunflower growth and drought tolerance mechanismsOriginal Paper

Аіdаnа Sugirbеkоva1, Mehmet Hamurcu1*, Anamika Pandey1, Mohd. Kamran Khan1, Fevzi Elbasan1, Zuhal Zeynep Avsaroglu1, Ayse Humeyra Omay1, Sait Gezgin1
1 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye

Sunflower (Helianthus annuus L.), a globally significant oilseed crop, faces substantial yield losses due to drought stress, a major environmental constraint. In this study, the effects of nitric oxide (NO) to increase drought tolerance in four sunflower genotypes (resistant Irtysh, RAR 56 and sensitive Zarya, RAR 133) showing different stress responses were investigated. Conducted in a controlled hydroponic system, the experiment applied 100 µM NO under 12% polyethylene glycol (PEG)-induced drought, assessing growth, physiological, and biochemical parameters. PEG alone reduced shoot and root growth, relative water content (RWC), and ion levels (K, Ca, Mg, Na), while increasing oxidative stress markers (malondialdehyde (MDA), H2O2, •OH) and electrolyte leakage, particularly in sensitive genotypes. NO application, both alone and with PEG, significantly mitigated these effects, enhancing root fresh weight, RWC, and antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and glutathione reductase (GR)), while reducing reactive oxygen species (ROS) and lipid peroxidation. Resistant genotypes (Irtysh, RAR 56) exhibited superior stress amelioration. These findings highlight NO’s role as a signalling molecule in augmenting drought resilience through genotype-specific mechanisms. The differential responses among genotypes suggest opportunities for identifying genetic markers associated with NO-mediated drought tolerance, which could guide marker-assisted breeding programs. Additionally, integrating these insights with genomic editing techniques may accelerate the development of drought-resistant sunflower cultivars tailored for water-scarce regions. Future research should optimise NO delivery methods and evaluate field-scale efficacy to advance sustainable sunflower production in water-limited environments.

Keywords: antioxidant enzyme activities; elemental content; Helianthus annuus; relative water content; water scarcity

Received: April 7, 2025; Revised: June 18, 2025; Accepted: June 19, 2025; Prepublished online: August 14, 2025; Published: September 5, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sugirbеkоva А, Hamurcu M, Pandey A, Khan MK, Elbasan F, Avsaroglu ZZ, et al.. Impact of nitric oxide on sunflower growth and drought tolerance mechanisms. Czech J. Genet. Plant Breed. 2025;61(3):138-150. doi: 10.17221/25/2025-CJGPB.
Download citation

References

  1. Almeida G.M., Silva A.A.d., Batista P.F., Moura L.M.d.F., Vital R.G., Costa A.C. (2020): Hydrogen sulfide, potassium phosphite and zinc sulfate as alleviators of drought stress in sunflower plants. Ciência e Agrotecnologia, 44: e006320. Go to original source...
  2. Amnan M.A.M., Pua T.-L., Lau S.-E., Tan B.C., Yamaguchi H., Hitachi K., Tsuchida K., Komatsu S. (2021): Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ, 9: e10879. Go to original source... Go to PubMed...
  3. Arora D., Bhatla S.C. (2017): Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of cu/zn sod and mn sod. Free Radical Biology and Medicine, 106: 315-328. Go to original source... Go to PubMed...
  4. Baghery M.A., Kazemitabar S.K., Dehestani A., Mehrabanjoubani P. (2023): Sesame (Sesamum indicum L.) response to drought stress: Susceptible and tolerant genotypes exhibit different physiological, biochemical, and molecular response patterns. Physiology and Molecular Biology of Plants, 29: 1353-1369. Go to original source... Go to PubMed...
  5. Bandurska H. (2022): Drought stress responses: Coping strategy and resistance. Plants, 11: 922. Go to original source... Go to PubMed...
  6. Bates L.S., Waldren R.P., Teare I. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. Go to original source...
  7. Beauchamp C., Fridovich I. (1971): Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287. Go to original source... Go to PubMed...
  8. Bergmeyer H. (1974): Methods of Enzymatic Analysis. Weinheim, Verlag Chemie. (in German)
  9. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Go to original source... Go to PubMed...
  10. BYSD (2023): Activity Report. Vegetable Oil Industrialists Association. Available at http://bysd.org.tr.
  11. Chavoushi M., Najafi F., Salimi A., Angajib A. (2019): Effects of nitric oxide on reducing oxidative stress induced by drought in safflower (Carthamus tinctorius L.). Journal of Plant Research (Iranian Journal of Biology), 32: 535-545.
  12. Chen J., Xiong D.-Y., Wang W.-H., Hu W.-J., Simon M., Xiao Q., Chen J., Liu T.-W., Liu X., Zheng H.-L. (2013): Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS ONE, 8: e71543. Go to original source... Go to PubMed...
  13. Dionisio-Sese M.L., Tobita S. (1998): Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135: 1-9. Go to original source...
  14. Ekinci M., Ors S., Yildirim E., Turan M., Sahin U., Dursun A., Kul R. (2020): Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russian Journal of Plant Physiology, 67: 740-749. Go to original source...
  15. Elsheery N.I., Helaly M.N., El-Hoseiny H.M., Alam-Eldein S.M. (2020): Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy, 10: 558. Go to original source...
  16. FAO (2023): Vegetable Oil Price Index. Rome, FAO. (in Turkish)
  17. Farouk S., Al-Ghamdi A.A.M. (2021): Sodium nitroprusside application enhances drought tolerance in marjoram herb by promoting chlorophyll biosynthesis and enhancing osmotic adjustment capacity. Arabian Journal of Geosciences, 14: 1-13. Go to original source...
  18. Foyer C.H., Halliwell B. (1976): The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133: 21-25. Go to original source... Go to PubMed...
  19. Hamurcu M., Khan M., Pandey A., Ozdemir C., Avsaroglu Z.Z., Elbasan F., Omay A.H., Gezgin S. (2020): Nitric oxide regulates watermelon (Citrullus lanatus) responses to drought stress. 3 Biotech, 10: 1-14. Go to original source... Go to PubMed...
  20. Hasanuzzaman M., Nahar K., Hossain M.S., Anee T.I., Parvin K., Fujita M. (2017): Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer peg-induced oxidative stress in rapeseed. Journal of Plant Interactions, 12: 323-331. Go to original source...
  21. Herzog V., Fahimi H.D. (1973): A new sensitive colorimetric assay for peroxidase using 3, 3'-diaminobenzidine as hydrogen donor. Analytical Biochemistry, 55: 554-562. Go to original source... Go to PubMed...
  22. Hussain H.A., Hussain S., Khaliq A., Ashraf U., Anjum S.A., Men S., Wang L. (2018): Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9: 393. Go to original source... Go to PubMed...
  23. Hussain I., Shehzad M.A., Akhtar G., Shafique Ahmad K., Mubeen K., Hassan W., Faried H.N., Ahmad S., Aziz M., Yasin S., Al-Abbadi G.A., El-Sheikh M.A., Elansary H.O., Ullah F. (2024): Supplemental sodium nitroprusside and spermidine regulate water balance and chlorophyll pigments to improve sunflower yield under terminal drought. ACS Omega, 9: 30478-30491. Go to original source... Go to PubMed...
  24. Khan M.K., Pandey A., Hamurcu M., Avsaroglu Z.Z., Ozbek M., Omay A.H., Gezgin S. (2021): Variability in physiological traits reveals boron toxicity tolerance in Aegilops species. Frontiers in Plant Science, 12: 736614. Go to original source... Go to PubMed...
  25. Khan M.K., Pandey A., Hamurcu M., Germ M., Yilmaz F.G., Ozbek M., Avsaroglu Z.Z., Topal A., Gezgin S. (2022): Nutrient homeostasis of Aegilops accessions differing in B tolerance level under boron toxic growth conditions. Biology, 11: 1094. Go to original source... Go to PubMed...
  26. Khan M.K., Pandey A., Hamurcu M., Vyhnánek T., Zargar S.M., Kahraman A., Topal A., Gezgin S. (2024): Exploring strigolactones for inducing abiotic stress tolerance in plants. Czech Journal of Genetics and Plant Breeding, 60: 55-69. Go to original source...
  27. Khan S., Choudhary S., Pandey A., Khan M.K., Thomas G. (2015): Sunflower oil: Efficient oil source for human consumption. Emergent Life Sciences Research, 1: 1-3.
  28. Khoshbakht D., Asghari M., Haghighi M. (2018): Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56: 1313-1325. Go to original source...
  29. Khoyerdi F.F., Shamshiri M.H., Estaji A. (2016): Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Scientia Horticulturae, 198: 44-51. Go to original source...
  30. Kim J.W., Minamikawa T. (1997): Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, Biotechnology, and Biochemistry, 61: 118-123. Go to original source...
  31. Laspina N., Groppa M., Tomaro M., Benavides M. (2005): Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science, 169: 323-330. Go to original source...
  32. Lau S.-E., Hamdan M.F., Pua T.-L., Saidi N.B., Tan B.C. (2021): Plant nitric oxide signaling under drought stress. Plants, 10: 360. Go to original source... Go to PubMed...
  33. Lei Y., Chen S., Xu L., Zhang Y., Yang Y. (2025): Enhancing plant drought tolerance through exogenous nitric oxide: A comprehensive meta-analysis. BMC Plant Biology, 25: 447. Go to original source... Go to PubMed...
  34. Liang B., Ma C., Zhang Z., Wei Z., Gao T., Zhao Q., Ma F., Li C. (2018): Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and Experimental Botany, 155: 650-661. Go to original source...
  35. Liu S., Wang X., Wang H., Xin H., Yang X., Yan J., Li J., Tran L.-S.P., Shinozaki K., Yamaguchi-Shinozaki K. (2013): Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genetics, 9: e1003790. Go to original source... Go to PubMed...
  36. Majeed S., Nawaz F., Naeem M., Ashraf M.Y., Ejaz S., Ahmad K.S., Tauseef S., Farid G., Khalid I., Mehmood K. (2020): Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiology and Biochemistry, 155: 147-160. Go to original source... Go to PubMed...
  37. Pandey A., Khan M.K., Hamurcu M., Athar T., Yerlikaya B.A., Yerlikaya S., Kavas M., Rustagi A., Zargar S.M., Sofi P.A., Chaudhry B., Topal A., Gezgin S. (2023): Role of exogenous nitric oxide in protecting plants against stresses. Agronomy, 13: 1201. Go to original source...
  38. Rao K.M., Sresty T. (2000): Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Mills-paugh) in response to Zn and Ni stresses. Plant Science, 157: 113-128. Go to original source... Go to PubMed...
  39. Rezayian M., Ebrahimzadeh H., Niknam V. (2020): Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. Journal of Soil Science and Plant Nutrition, 20: 1122-1132. Go to original source...
  40. Sahay S., Khan E., Gupta M. (2019): Nitric oxide and abscisic acid protects against peg-induced drought stress differentially in Brassica genotypes by combining the role of stress modulators, markers and antioxidants. Nitric Oxide, 89: 81-92. Go to original source... Go to PubMed...
  41. Sarazin V., Duclercq J., Guillot X., Sangwan B., Sangwan R.S. (2017): Water-stressed sunflower transcriptome analysis revealed important molecular markers involved in drought stress response and tolerance. Environmental and Experimental Botany, 142: 45-53. Go to original source...
  42. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. (2021): Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10: 259. Go to original source... Go to PubMed...
  43. Shehzad M.A., Maqsood M., Nawaz F., Abbas T., Yasin S. (2018): Boron-induced improvement in physiological, biochemical and growth attributes in sunflower (Helianthus annuus L.) exposed to terminal drought stress. Journal of Plant Nutrition, 41: 943-955. Go to original source...
  44. Shehzad M.A., Nawaz F., Ahmad F., Ahmad N., Masood S. (2020): Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicology and Environmental Safety, 187: 109841. Go to original source... Go to PubMed...
  45. Shehzad M.A., Hussain I., Akhtar G., Ahmad K.S., Nawaz F., Faried H.N., Mehmood A. (2023): Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in Helianthus annuus L. Plant Physiology and Biochemistry, 202: 107935. Go to original source... Go to PubMed...
  46. Terzi R., Kadioglu A., Kalaycioglu E., Saglam A. (2014): Hydrogen peroxide pretreatment induces osmotic stress tolerance by influencing osmolyte and abscisic acid levels in maize leaves. Journal of Plant Interactions, 9: 559-565. Go to original source...
  47. Yadav S., David A., Bhatla S.C. (2010): Nitric oxide modulates specific steps of auxin-induced adventitious rooting in sunflower. Plant Signaling & Behavior, 5: 1163-1166. Go to original source... Go to PubMed...
  48. Yang X., Lu M., Wang Y., Wang Y., Liu Z., Chen S. (2021): Response mechanism of plants to drought stress. Horticulturae, 7: 50. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.